z 7 rZ ey <55
- -

OVERVIEW

languageONE is an extensible system, that is — it is easily extended (most languages are). Because the system is
basically a collection of assembler macros, a macro may be written by anyone and used as they code. Done
correctly, the macro sits in the language as though it had always been there.

So what are packages ?

Packages are a collection of macros, and their underlying subroutines, written in raw languageONE code, that
extends languageONE and provides the backbone for completing common tasks. This document maps out the
three such package, LCURSES.PKG that extends languageONE by providing greater control over the
keyboard and screen, LMENUS.PKG which assist in building common menus and MATHS.PKG that provides
access to the FPU and its associated functions.

To provide access to a languageONE package, you must code an include statement. ie:-

%include ‘include/LCURSES.PKG’
%include ‘include/LMENUS.PKG’
9%include ‘include/MATHS.PKG’

NOTE:- LMENUS uses LCURSES so if you intend to use LMENUS then LCURSES must be defined along
with it.



The following screenshots offer an example of the output that is easily attained with the Icurses and the Imenus
packages.

@UPSTAIRS: /s

Meri Den

B_1_3 Subro
A Sub Meru
Menu Option
Menu Option
Menu Option
Menu Option
Menu Option

r@UPSTAIRS:

File Edit Search

Yt
Open, ..
Save

Save As...

Print

Exit




A WORD ABOUT TERMINALS

Historically speaking a terminal is a relatively dumb electromechanical device with an input interface (like a
keyboard) and an output interface (like a display). It was connected to another device (like a computer) via
two logical channels, and all it does is:

¢ send the keystrokes down the first line

¢ read from the second line and display them on the screen.

escape sequences were used to control cursor location, color, font styling, and other options on video
text terminals. Certain sequences of bytes, most starting with an escape and a bracket character followed by
parameters, are embedded into text. The terminal interprets these sequences as commands, rather than text
to display verbatim.

Almost all manufacturers of video terminals added vendor-specific escape sequences to perform operations
such as placing the cursor at arbitrary positions on the screen. One example is the VT52 terminal, which
allowed the cursor to be placed at an x,y location on the screen by sending the ESC character, a Y
character, and then two characters representd by numerical values equal to the x,y location, plus 32 (thus
starting at the ASCII space character and avoiding the control characters). The Hazeltine 1500 had a similar
feature, invoked using ~, DC1 and then the X and Y positions separated with a comma. While the two
terminals had identical functionality in this regard, different control sequences had to be used to invoke
them.

As these sequences were different for different terminals, elaborate libraries such as termcap ("terminal
capabilities") and utilities such as tput had to be created so programs could use the same API to work with
any terminal. In addition, many of these terminals required sending numbers (such as row and column) as
the binary values of the characters; for some programming languages, and for systems that did not use
ASCII internally, it was often difficult to turn a number into the correct character.

The ANSI standard attempted to address these problems by making a command set that all terminals would
use and requiring all numeric information to be transmitted as ASCII numbers. These standards were
introduced in the 1970s to replace vendor-specific sequences and became widespread in the computer
equipment market by the early 1980s. They were used in development, scientific, commercial text-based
applications as well as bulletin board systems to offer standardized functionality.

Although hardware text terminals have become increasingly rare in the 21st century, the relevance of the
ANSI standard persists because a great majority of terminal emulators and command consoles interpret at
least a portion of the ANSI standard.



Lcr2ocreecreraC oy

(/ 2, ’

A WORD ABOUT TERMINAL EMULATION

A fterminall emulator is a program that emulates the functionalities of the traditional computer terminals.
In simple words, unlike the classic terminal that performed functions using hardware, the terminal emulator
executes the same tasks in software.

Examples of Linux terminal emulators are xterm, konsole and gnome-terminal.

ncurses (new curses) is a programming library providing an application programming interface that allows
the programmer to write text based user interfaces in a terminal-independent manner. It is a toolkit for
developing application software that runs under a terminal emulator.

LCURSES maybe thought of as “languageONE curses” or perhaps “light curses”. It does not try to be
ncurses but tries to provide enough functionality so that a fully functioning text based interface can be easily
produced within a terminal emulator. It defines the most common escape codes as mnemonics and allows
their transmission and receipt via the standard /languageONE display and accept statement. LanguageONE
has previously provided this function but the LCURSES.PKG has been developed to give far greater control
than was previously possible. It also highlights the use of languageONE as a macro language and how the
language itself may be extended by building on itself.

some Assumptions Lcurses does not try to determine the type of terminal any specific emulator mimics. It
assumes ANSI standard or VT52/VT100 (or combination). It has been tested with xterm, konsole and
gnome-terminal and relies on the ability of these emulators to be configured to return specific escape
sequence for any given key.

STDIO.LIB is the languageONE module that provides terminal access and it is there you will find the escape
codes that are being used. As languageONE is delivered with all the original source code it is a simple task
to modify the generic escape codes currently being used to something that may be more appropriate.
Having said that, it is a more desireable path to simply configure the emulator to return that which
languageONE expects.

One Last Thing Originally a terminal was connected to the computer through serial cables plugged into a
Universal Asynchronous Receiver and Transmitter (UART). A UART driver reads from the hardware
device and applies the line discipline. The line discipline is in charge of converting special characters (like
end of line, backspaces), and echoing what has been received back to the teletype, so that the user can see
what it has been typed. It is also responsible to buffer the characters. When enter is pressed, the buffered
data is passed to the foreground process for the session associated with the TTY. The whole stack as
defined above is called a TTY device.

IMPORTANT:- echoing what has been received back to the teletype
It is undesireable to echo escape sequences as this will destroy any screen that we are trying to build. This
should be turned off by the use of the following command
:/$ stty -echoctl
To make this permenant it should be coded within your .bashrc

EXAMPILES

languageONE/src/examples/V2.13.0ONE is an example program used for the development of the lcurses
and Imenus packages and can be used as a guide in developing languageONE programs that use the Icurses
and Imenus facilities. in addition languageONE/src/examples/0. MENU-TEMPLATE.ONE is a template
program that can be used to build menu driven applications.



LCUSES

The LCURSES.PKG manages line drawing characters and an enhanced AcceptAt macro.

Horizontal Line
Icurses.hline startRow, StartColumn, EndColumn

This macro will generate a horizontal line at the specified row, starting at startColumn and finishing
at EndColumn. The desired foreground and background colours need to established prior to this call

Vertical Line
Icurses.vline startCol, StartRow, EndRow
This macro will generate a vertical line at the specified column, starting at startRow and finishing at
EndRow. The desired foreground and background colours need to established prior to this call

Box
Icurses.box startRow, startColumn, endRow, endColumn, Shadow

A box will be drawn using the supplied parameters. Shadow should be set to c_TRUE if a shadow is
required or c_FALSE if a show is not required. The desired foreground and background colours need
to established prior to this call.

AcceptAt
Icurses. AcceptAt Row, Col, FieldName
AcceptAt enhances the Accept.At macro by acknowledging a number of function keys and returning
a value by way of RETURN_CODE.

The following constants have been defined:-

FUNCTIONKEY1 FUNCTIONKEY2 FUNCTIONKEY?3 FUNCTIONKEY4
FUNCTIONKEYS FUNCTIONKEY6 FUNCTIONKEY?7 FUNCTIONKEYS
FUNCTIONKEY9 FUNCTIONKEY10 FUNCTIONKEY11 FUNCTIONKEY12
RETURN ALT ARROWUP ARROWDOWN
ARROWRIGHT ARROWLEFT END HOME
INSERT ENDOFFIELD ESCAPE BACKSPACE
NULL

Additionally, STDIO.LIB now includes 2 more escape code driven variables. They are:-

c_HideCursor
¢_ShowCursor




z 7 rZ ey <55
- -

LMENUS

The LMENUS.PKG will draw and manage menus based on the data supplied to it. Note that it uses the
lcurses.pkg which must be included in your program if you want to use it. It functions by accessing two
tables that should be defined by the calling program. They are:-

The All Menus Table
which defines all the menus that the calling program wishes to manipulate. The index into the table
identifies the table while the table record defines the geometry of the table. The following record must be
coded within the calling programs files section.

@begin_record c_ AM_RecordlLen, AM_Record

@insertnumber AM_StartRow, 00,'99' ; Starting row
@insertnumber AM_StartCol, 00,'99' ; Starting column
@insertnumber AM_EndRow, 00,'99' ; Ending Row
@insertnumber AM_EndCol, 00,'99' ; Ending Column
@end_record AM_Record
@insertnumber AM_Idx, 00,'99' ; the index returned by LMENUS.PKG

The Menus Table
which defines the individual menu items. It is a 2 dimensional table with the 1* dimension defined by
AM_Idx sourced from the all menus table. The following record must be coded within the calling
programs files section.

@begin_record c_M_RecordLen,M_Record

@insertword M_Type, 01,"” ; the menu entry type
@insertnumber M_Target, 00,'99999999' ; the target
@insertword M_Entry, 55,"” ; and the text
@end_record M_Record
@insertnumber M_Idx, 00,'99 ; the index returned by LMENUS.PKG

NOTE: that c_. AM_RecordLen and c_M_RecordLen must be defined before their use and ALWAYS
have the following definition:-

c_AM_RecordLen EQU 08

c_M_RecordLen EQU 64

NOTE: that c. AM_NoOfRecords and c. M_NoOfRecords used by the Imenus program (and your own)
must be established preceeding the include statement. Define them as:-

c_AM_NoOfRecords EQU nn
c_M_NoOfRecords EQU nn

As with all tables in languageONE there must be an entry in the tables section:-
@inserttable AM_Table, c AM_RecordLen*8 ; Allows for 8 menus
@inserttable M_Table, c M_RecordLen*8*16 ; Allows for 8 menus with 16 entries

and they must be bound in the instructions section:-
@tables_bind AM_Table,AM_Record,8
@tables_bind M_Table,M Record,8,16



-z 7 rEey & <&
- -

Menu tems
Imenus.Menultems AM_Idx, M_Idx, M_Type, M_Target, M_Entry

The Menus record may be populated and loaded manually but the Imenus.Menultems has been
defined to make this a little easier.

M=TYPE
S: A Subroutine in this (or a linked) program
M: A sub Menu
X: An external program
: Space is end of options and must be defined to mark the end of the menu

M=TARGET
M_Type = S: Subroutine name
M_Type = M: Menu No
M_Type = X: 0

M=ENTRY
The text that appears on the menu

NOTE:- That if this table is loaded manually, the target must be loaded using the following
fragments of assembler code:-

e If the Target is a Menu, the target must be loaded with it’s number
mov qword[M_Target],Menu Number

¢ while if the target is a subroutine the address must be loaded as
lea rax,SubRoutineName
mov qword[M_Target],rax

Menu
Imenus.Menu AM_Idx, c. TRUE/c_FALSE

The menu macro will pass handling of the menu over to Imenus to manage. This routine simply
handles the ARROWUP and ARROWDOWN keys while returning the RETURN and ESCAPE
keys along with the ARROWLEFT and ARROWRIGHT keys in RETURN_CODE.

When the RETURN key has been pressed AM_Idx and M_Idx will have been set and the table
record has been read.

When the second parameter is set to c_TRUE Imenus will wait for a user response. When the second
parameter is set to c_FALSE, the menu will be displayed and Imenus will return control to the
calling program.

Call
Imenus.Call M_Target

This macro should be used (in place of the normal $Call) when a sub routine name has been returned
the Imenus.Menu.



z 7 rZ ey <55
- -

MATHS

The MATHS.PKG provides access to the FPU and it’s associated functions in the form of functions

F=Add(X.Y)
Answer = f_Add(Number1,Number2)

Adds Number2 to Numberl and returns the result in Answer.

T=Sub(x,y)
Answer = f_Sub(Numberl,Number2)

Subtracts Number?2 from Numberl and returns the result in Answer.

F=Mull(x,y)
Answer = f_Mul(Numberl,Number2)
Multiplies Numbe2 and Number] and returns the result in Answer.

f=Div(x.y)
Answer =f_Div(Numberl,Number2)
Divides Number1 by Number2 and returns the result in Answer.

f=Power(x.y)
Answer = f_Power(Base,Exponent)
returns the result of the base to power of the exponent.

f=SakRool(x)
Answer = f_SqRoot(Number)

returns the square root of Number.

T=Sin(x)
Answer = f_Sin(Degrees)
returns the sine of degrees

F=Cos(x)
Answer = f_Cos(Degrees)
returns the cosine of degrees

F=Tan(x)
Answer =f_Tan(Degrees)

returns the tan of degrees

F=DI(x)
Answer =f_PI()

returns the value of PI

F=LogN(x)
Answer = f_LogN(Number)

returns the natural log of Number

F=Log(x)
Answer =f_Log(Number)
returns the log of Number



	OVERVIEW
	A WORD ABOUT TERMINALS
	A WORD ABOUT TERMINAL EMULATION
	Some Assumptions Lcurses does not try to determine the type of terminal any specific emulator mimics. It assumes ANSI standard or VT52/VT100 (or combination). It has been tested with xterm, konsole and gnome-terminal and relies on the ability of these emulators to be configured to return specific escape sequence for any given key.
	One Last Thing Originally a terminal was connected to the computer through serial cables plugged into a Universal Asynchronous Receiver and Transmitter (UART). A UART driver reads from the hardware device and applies the line discipline. The line discipline is in charge of converting special characters (like end of line, backspaces), and echoing what has been received back to the teletype, so that the user can see what it has been typed. It is also responsible to buffer the characters. When enter is pressed, the buffered data is passed to the foreground process for the session associated with the TTY. The whole stack as defined above is called a TTY device.
	EXAMPLES
	languageONE/src/examples/V2.13.ONE is an example program used for the development of the lcurses and lmenus packages and can be used as a guide in developing languageONE programs that use the lcurses and lmenus facilities. in addition languageONE/src/examples/0.MENU-TEMPLATE.ONE is a template program that can be used to build menu driven applications.
	LCURSES
	Horizontal Line
	Vertical Line
	Box
	AcceptAt

	LMENUS
	Menu Items
	Menu
	Call

	MATHS
	f_Add(x,y)
	f_Sub(x,y)
	f_Mul(x,y)
	f_Div(x,y)
	f_Power(x,y)
	f_SqRoot(x)
	f_Sin(x)
	f_Cos(x)
	f_Tan(x)
	f_PI(x)
	f_LogN(x)
	f_Log(x)


