
OVERVIEW
languageONE is the both the newest and the oldest of programming languages. By the strictest of definitions it
is assembler code, but you would never know that by looking at it. More broadly, it is a set of macros that
provide for all the functionality required when programming. And it is more. It provides a framework to
support the macros in an assembled program and systematically defines the structures required to manage data
and program flow. languageONE provides for 64bit coding and can be used "as is" or can be used to facilitate
an in depth knowledge of the system, so that the full power of the language can be realised. Unlike some other
systems which allow in line assembler languageONE is assembler, so if you want to write some assembler code,
just do it.

languageONE is extensible (able to be extended). Because the language is based on macros you can code a
solution, give it a macro name and it then becomes part of the language. Additionally, the existing syntax can
be changed to suit your programming style. ie. The delivered syntax allows “_GT” or “>” in decision making.
However, as this is just a predefined token and accessable via an %include file, your are free to modify this to
whatever you prefer. More easily, languageONE impliments the idea of Synonyms.

So..What is a macro
a macro is a single instruction that expands automatically into a set of instructions to perform a particular task.
And what makes macros so powerful is that the preprocessor of a macro assembler allows you to code
parameters that may differ each time the macro is expanded. Consider the following assembler macro:-

%macro $initialise 1-2 ' '
mov al, %2
mov rdi, %1
mov rcx,[%1-8]
cld
rep stosb

%endmacro

this probably doesn't look too familiar but when coded in languageONE it would look like:-
 Initialise w_FirstName
This is how you might initialise a data item. (example only)

LINUX/WINDOWS
Version 3.00 seperated the Linux and the Windows versions. The Linux version continues to target the NASM
assembler, while the Windows version targets MASM.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 1

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

THE SYSTEM
languageONE is implemented with a number of (o)bject modules that provide functionality to the system. These
modules are stored in the languageONE.lib file and must be statically linked with your assembled code. You
may think of them as the runtime system for languageONE

WHERE IS EVERYTHING

languageONE
pre commandline pre assemble script [Linux Only]
assemble commandline assemble script
link commandline link script
makeONE commandline make utility
bin languageONE executables

languageONE [Linux] reWRITER
languageONE.exe [Windows] reWRITER

doc Documentation
languageONE.odt This manual
languageONE.pdf This manual
languageONE.doc This manual
LICENSE gnu general public license
packages.odt Documentation for the packages system
packages.pdf Documentation for the packages system
packages.doc Documentation for the packages system
README.MD github readme
VERSION.HISTORY Text file of all version history

Html *.html/.jpg Html screens/images
include *.* LanguageONE components
Lib languageONE.lib LanguageONE runtime
Src *.lib LanguageONE source

languageONE.ASM
examples *.ONE Example programs
_FLTK *.* Fltk (gui) programs

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 2

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

THE LANGUAGEONE "reWRITER"

Overview
HINT:- It may be more useful to skip this section and come back to it.

As mentioned above the languageONE "reWRITER" is a pre-processor that manipulates text. It is NOT a
compiler nor is it an assembler. (A language rewriter is usually a program that translates the form of
expressions without a change of language). It is in fact written in languageONE and can be modified and
assembled as any other languageONE program can be.

NASM and other assemblers implement a pre-processor that presents certain facilities to make coding
easier. As such a program as input to NASM may contain pre-processor statements to direct the pre-
processor. ie. %macro and %endmacro are both pre-processor directives. NASM's pre-processor
implements some unequalled features but is fixed in the way it works. As an example, NASM uses no
brackets other than single line macros. Brackets are almost mandatory in many programming languages and
such the languageONE "reWRITER" will manipulate their use.

The command line for "reWRITER", assembling and linking is as follows:-

 makeONE <program name> (no extension – but must be “.ONE”)

 The command line for reWriting only is as follows:-

 bin/languageONE <program name> (no extension – but must be “.ONE”)

"reWRITER" functions:-
Note the terminology used in this manual. Non reWritten code is referred to as 'raw' or 'pure' languageONE,
while reWritten code is referred to as “cooked” languageONE. When describing macros both “raw” and
“cooked” syntax will be listed.

Continuation Character
NASM/MASM themselves recognise the \ (backslash) as a continuation character and as such is also
recognised by languageONE (by simply letting it pass through)

Line Splitting
NASM/MASM expects one instruction per line. The languageONE "reWRITER" will acknowledge the
“|” character as a line splitting character and split the lines into their components.

Bracketing
All brackets found, other than those on single line macros, will be removed. This gives you a great deal
of freedom in the way you wish to code ie.

Commas
Commas will be inserted where NASM expects to see them.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 3

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/
https://en.wikipedia.org/wiki/Rewriting

Synonyms
languageONE encompasses the idea of “synonyms”.

Essentially a synonym may be used at a program level to rename any token. This allows you to use the
synonym within your program and the "reWRITER" will replace it with it’s original value. The synonym
directives, BEGIN.SYNONYMS and END.SYNONYMS, and the code they enclose, must be coded as
comments (starting the line with a semi-colon). The synonym (coded 1st) and the replaced value must be
separated by a colon. The structure is as follows:-

; BEGIN.SYNONYMS
; Words. : @WORDS_
; Integers. : @INTEGERS_
; Numbers. : @NUMBERS_
; END.SYNONYMS

Synonyms may be placed in a seperate file and “included” in your code by supplying the path\filename:-

; BEGIN.SYNONYMS
; include\LPACK1.SYM
; END.SYNONYMS

Note:-
The file “include\LPACK1.SYM is provided with the languageONE system and is denoted as a language
pack. It redefines all the system KEYWORDS to those favoured by the author of languageONE and is
coded in all example programs .

Beginning/End Constructs
BEGIN – END constructs will be counted and reported at the end of the reWriting

[000012] Begin Subs [000012] End Subs
[000012] Begin Repeats [000012] End Repeats
[000002] IF's [000002] End Ifs
[000000] Dot Commands [000000] Dot Ends
[000000] Begin Test's [000000] End Tests
[000000] When's [000000] Wend's
[000008] Open Braces [000008] Close Braces
[000000] Open SqBrackets [000000] Close SqBrackets

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 4

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Decimal Places
Where NASM/MASM sees a decimal point it assigns a value based on its assumption that the
program will use the Floating Point Unit. languageONE does not in fact use the FPU but rather performs
fixed point arithmetic. To that end numbers with decimal places will be manipulated by the
"reWRITER" to allow for correct processing. Ie:-

@insertnumber Test1,-1.23456,'#,###,##9.99999-'
will be transformed into

@insertnumber Test1,-123456,'#,###,##9.99999-'

@insertnumber Test2,1.234,'##9.99999-'
will be transformed into

@insertnumber Test2,123400,'##9.99999-'

@insertnumber Test4,12345,'##9.99999-'
will be transformed into

@insertnumber Test4,1234500000,'##9.99999-'

In addition, where a fixed point number is used as a literal following the begin.instructions directive a
picture must be supplied. The "reWRITER" will now provide that picture such that you may code only
the fixed point number. So, whereas a “raw” languageONE program requires for example

@numbers_add n_Destination,{12345,'99.999'}
you may code

@numbers_add n_Destination,12.345

Inference
The "reWRITER" will 'infer' calculations in the following way:-

w_SomeWord = 'Hello World'
and the "reWRITER" will infer:-

@words_copy 'Hello World',w_SomeWord

A = B + 2 * 80
and the "reWRITER" will infer:-

@integers_calc A,=,B,+,2,*,80

A = B + 2.34 * 67.345
and the "reWRITER" will infer:-

@numbers_calc A,=,B,+,{234,”9.99”},*,{67.345,”99.999”}
Precedence

languageONE uses square brackets to denote precedence. You can think of square brackets simply as
telling the reWriter to “Do this first”

A = [[[B + 2.34 + 3.45] / 3] + 123.88] * [5 + [C * 2.45]]

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 5

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Table/Array Elements
languageONE extends the use of square brackets and in combination with inference can now recognise
Table Elements coded in the more traditional format.

n_Integer[Idx]

Note:- The languageONE reWriter cannot infer indexed table elements {ie. Item[1] = 1} coded prior to
the BIND command.

With the introduction of Arrays, languageONE also extends the use of braces and in combination with
inference can now recognise Array Elements coded in the more traditional format.

n_Integer{Idx}

WINDOWS

As the raw languageONE code for Windows varies in some ways from the raw languageONE code for
Linux, the reWriter in Version 3.00 has been enhanced in terms of its output. MASM is now the target
for Windows, while NASM is retained as the target for Linux. If coding “cooked” code you should
include the word “WINDOWS” anywhere in the 1st line of your program and MASM syntax code will be
be produced.

The Synonym language pack provided with release 3.00 aids in maintaining the same syntax for both
operating systems when utilising the “cooked” version of each program.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 6

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

DATA DEFINITION
Data in languageONE is defined in one of two areas. For text strings it is within the Dictionary and for numbers
it is within the Matrix.

DICTIONARY
The 'dictionary' is the area of the program where words, phrases and sentences may be described. The
'BEGIN.DICTIONARY' directive is used to inform the system that the dictionary will begin here. The
'END.DICTIONARY' directive is used to inform the system that the Dictionary is complete.

LINUX %include “BEGIN.DICTIONARY”

WINDOWS include <BEGIN.DICTIONARY>

languageONE uses the keyword “@INSERTWORD” to define strings within the dictionary.

LINUX @INSERTWORD

WINDOWS @INSERTWORD

example:-

@Insertword w_MyFieldName, 32, 'My Fields Literal'

w_MyFieldName is the field name used within the languageONE program
32 is the length of the string
'My Fields Literal' is the initial value given to w_MyFieldName

Note:-that when the given literal is shorter than the defined string length the field will be padded with
spaces thus to initialise a blank field you would code:-

@INSERTWORD w_Blanks,64,”“ [NASM]
@INSERTWORD w_Blanks,64,” “ [MASM] (a space must be coded)

alias:-

@Insertword {w_Alias,w_MyFieldName}, 32, 'My Fields Literal'

An alias may be defined when using the @INSERTWORD macro. Both names may be used throught
your program.

Qualifying a string
Wherever a string is used within a program it may be qualified by coding a starting position and the
number of characters to reference. It takes the form:-

LINUX {w_MyFieldName,8,16}

WINDOWS <<w_MyFieldName,8,16>>

This reads as – starting at character eight take the next 16 characters.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 7

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

MATRIX
The 'matrix' is the area of the program where Numbers may be described. The 'BEGIN.MATRIX'
directive is used to inform the system that the Matrix will begin here. The 'END.MATRIX' directive is
used to inform the system that the Matrix is complete.

LINUX %include “BEGIN.MATRIX”

WINDOWS include <BEGIN.MATRIX>

languageONE uses the keyword “@INSERTNUMBER” to define Numbers within the matrix

LINUX @INSERTNUMBER

WINDOWS @INSERTNUMBER

example:-

@Insertnumber w_MyNumber,100

w_MyNumber is the field name used within the languageONE program
100 initialises the number field to 100

@Insertnumber w_MyNumber,100,'#,##9-'

w_MyNumber is the field name used within the languageONE program
100 initialises the number field to 100
'#,##9-' The numbers ‘PICTURE’

The numbers 'picture' describes how the system handles/outputs the number. It comprises a series of
characters that define the formatting of the number in a similar way to the BASIC programming
language. The following symbols are represented:-

'-' (the minus sign) [Last character]
This defines the number as being signed. The number can represent both positive and
negative numbers. It should be the last character of the picture.

'9' This defines a place value for the number.
If there is a zero in this position it will be displayed

'#' This also defines a place value for the number
However, a leading zero in this position will be displayed as a space

',' This defines a thousands indicator and will be displayed when appropriate.

'.' This defines the number as a Fixed Point number.

Note:- If a number has no picture, a default 26 character picture will be used. If a number without
picture is accepted as input, languageONE will assign a picture developed from that input.

ie. accept=1,234.56- Assigned Picture= 9,999.99-

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 8

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Integers
Unsigned: All numbers will be considered as signed
Signed: From −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
can be represented as integers.

Fixed point numbers
Fixed Point numbers are used in languageONE. This is different from many programming
languages that use floating point numbers. Floating point numbers require a FPU and are not entirely
accurate. (Ever had that experience with a calculator where you enter something like 2 * 2 and get an
answer of 3.9999999999

Fixed point numbers in languageONE are integers with an 'implied' decimal place. This is implemented
via the picture clause of the insertnumber keyword. By defining a picture like '999.99', you are asking
for a number that contains 2 decimal places. A picture of say '#,###,##9.9999-' defines a number with 4
decimal places with a sign displayed (remembering all numbers are treated as signed).

Because all numbers are actually 64 bit integers the following restrictions apply to Fixed Point numbers.
Using languageONE's largest integer (9,223,372,036,854,775,807) the following range is encapsulated

.9223372036854775807
 This number can define the size of something smaller than an electron

922337203685477580.7
This number can count, in seconds, from the big bang until now and be only half filled. It

follows that the largest number that contains the largest no of decimal places is
9999999999.999999999 or 999999999.9999999999

Defining Fixed Point Numbers
Because fixed point numbers are held as an integer with a implied decimal place you must
acknowledge the number of decimal places in a given value. That is, given a picture of '999.99' and a
required value of 123 you must code 12300,'999.99'. Coding 123,'999.99' implies the number is 1.23

Literals
If a fixed point number is required for a literal then a picture MUST be coded following that literal.
ie: {123,'9.99'} equates to 1.23

Note:- this may be handled by the "reWRITER". A pure Fixed Point number may be defined ie A =
1.23 – be aware though that the reWritten version of your program will of had the number converted to
its implied Fixed Point value)

Setting precedence
square brackets denote precedents for number and these are handled by the "reWRITER". Ie
A = [[[B + 2.34 + 3.45] / 3] + 123.88] * [5 + [C * 2.45]]

alias:-

@Insertnumber {w_Alias,w_MyNumber},100,'#,##9-'

An alias may be defined when using the @INSERTNUMBER macro. Both names may be used
throught your program.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 9

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

FILES
The 'FILES' section is the area of the program where Files may be described. The 'BEGIN.FILES'
directive is used to inform the system that file descriptions will begin here. The 'END.FILES' directive is
used to inform the system that the file section is complete.

LINUX %include “BEGIN.FILES”

WINDOWS Include <BEGIN.FILES>

Each entry begins with the 'keyword' @INSERTFILE, followed by a file type indicator, a name you choose
to refer to the file within the program, and the external name of the file.

LINUX @INSERTFILE

WINDOWS @INSERTFILE

example:-

Insertfile Delimiter, I-Name, './X-Name'

where Delimiter may be
L,

 c_LF,
 c_CSV,
 '?'
 c_RECORD,
 c_RANDOM,
 c_INDEXED,
 c_DIRECTORY,
 'Your Own Delimiter'

where I-Name is the name used within the program to reference the file
where './X-Name' is the external name of the file

DELIMITERS
c_NULL

Indicates that a NULL value (0x00) is used to delimit logical records. languageONE will add
this character when writing to the file and strip this character when reading from the file.

c_LF
Indicates that a LINEFEED value (0x0A) or (0x0A,0x0D) is used to delimit logical records.
languageONE will add this character when writing to the file and strip this character when
reading from the file.

c_CSV
Indicates a standard comma delimited file will be used. Alphanumerics will be enclosed in
quotation marks, fields will be separated by commas and a LINEFEED character will delimit
the logical record

'?' Your own character
Any single character enclosed in quotes

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 10

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

DELIMITERS...cont

c_RECORD
Indicates that a RECORD will be used to read from and write to the file (refer next section)

c_RANDOM
Indicates that the file can be accessed by record no. RECORDS are implicit in random files.

c_INDEXED
Indicates that the file is optimised for use with the Xtables module. Its format echo's the Xtable
format in memory, ie there is an 8 byte index field and a 1 byte status field that precedes each
record. It is accessed by record no. RECORDS are implicit in indexed files.

c_DIRECTORY
Indicates that it is a directory that is being read.

The external name may be replaced by a dictionary word and can be allocated dynamically by simply
setting it equal to name. ie.

[in the file section] @Insertfile c_LF,IN_File

[in the code section] IN_File = “External File Name”

File Status
When accessing files languageONE provides a 'STATUS' field. It is defined as FileName_STATUS.
Thus the status field for the file A01_File would be A01_File_STATUS. This field can be checked each
time a file is accessed.

Present values are:-

Constant Value Meaning

EOF 10 End Of File

INVALIDKEY 23 Invalid Key

DUPLICATE 22 More than 1 record exists for this key

LOCKED 90 Record or File is locked

File Size
Additionally, when a file has been opened, languageONE provides a 'SIZE' field. It is defined as
FileName_SIZE. Thus the size field for the file A01_File would be A01_File_SIZE.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 11

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

RECORDS
A record is a collection of elements, typically in fixed number and sequence and typically indexed by
serial numbers or identity numbers. The elements of records may also be called fields or members.

Records provide for structuring data in a logical way. They are usually, but not always, used to
describe data in a file and thus provide clearer code when defined with the file in question. Each entry
in a file is described as a record. Records are also mandatory in languageONE tables. (refer next section)

Each record entry starts with @BEGIN_RECORD keyword. It is followed by a numeric value defining
the length of the record, and then the record name. Each record terminates with the
@END_RECORD keyword followed by the record name. Fields can then be defined within the
BEGIN and END of the record by using @Insertword and @insertnumber.

LINUX @BEGIN_RECORD

WINDOWS @BEGIN_RECORD

Record Description

@begin_record record_length,A01_Record
@insertnumber A01_No1, 00, '99999'
@insertnumber A01_No2, 00, '99999'
@insertnumber A01_No3, 00, '99999'
@insertnumber A01_Word1, 10, ' '
@insertnumber A01_Word2, 10, ' '

@end_record A01_Record

The files module must be informed of the record length and it is Parameter 1 or the
@BEGIN_RECORD keyword that accomplishes this.

Record No
When a record is used for File access, languageONE provides a Record Number which may be
used to access records in a random manner rather than sequentially [one after the other]. This access
method is termed 'relative' or 'random'. The Record Number is the record name followed by '_NO',
so in the case above the record no field will be A01_Record_NO.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 12

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

TABLES
Tables are defined in languageONE as structured internal storage. They are treated very similarly to Files
but unlike files must ALWAYS have a record associated with them and thus are almost synonymous with
random access files. This allows file records to be read into storage quite efficiently. You insert a table by
defining its size (Record Length) times No Of Records that you require.

The 'TABLES' section is the area of the program where tables may be described. The
'BEGIN.TABLES' directive is used to inform the system that Table descriptions will begin here. The
'END.TABLES' directive is used to inform the system that the definitions are complete.

LINUX %include “BEGIN.TABLES”

WINDOWS Include <BEGIN.TABLES>

Insert Table
@Inserttable WorkTable, RecordLength * NoOfRecords

Inserting a table defines the table name and the overall size of the table, defined as the record length
times the number of records. Before a table can be used it must be bound.

Bind Table

LINUX @TABLES_BIND

WINDOWS @TABLES_BIND

@Tables_bind WorkTable,A01_Record,NoOfRecords

While the @INSERTTABLE keyword tells languageONE about the overall size of the table,
@TABLES_bind, binds a record to the table and defines the dimensions. It is coded within the body of
the program (following the %include BEGIN.INSTRUCTIONS)

Of course Tables/Arrays can have more than 2 dimensions. languageONE allows up to 9 dimensions (you
count the record as the 1st dimension.). They are defined by first INSERTing a TABLE with the
dimensions detailing the size and then by binding a record to the table.

ie @TABLES_bind WorkTable2,A01_Record,3,4

If you use an analogy like pages in a book you could say that the record defines the words across the
page, the 3 defines the lines down the page and the 4 defines the pages. You can expand this analogy with
an extra dimension defining books. So the index 3,4,5 would define 3 books, 4 pages, and 5 lines leaving
the record to define the words across the line.

@Inserttable WorkTable2,RecLength*3*4*5
@Tables_Bind WorkTable,A01_Record,3,4,5

Tables are read or written by providing the required index(s) numbers in the get and put operations.
Refer further ahead.
Note:- The languageONE reWriter cannot infer indexed table elements {ie. Item[1] = 1} coded following to the
BIND command.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 13

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

XTABLES
XTables are large tables that have been optimised for use with indexed files, they may however be used for
any other purpose. They are single dimension tables with memory being allocated at runtime.

InsertXTable
@InsertXTable LargeTable

Inserting an XTable defines the table name. Before a table can be used it must be bound.

Bind Xtable

LINUX @XTABLES_BIND

WINDOWS @XTABLES_BIND

@XTables_bind LargeTable,Record,Size

While the @INSERTXTABLE keyword tells languageONE the xtables name, @XTABLES_bind,
binds a record to the table and defines the tables size. It is coded within the body of the program
(following the BEGIN.INSTRUCTIONS)

NOTE:- An XTABLE contains an extra 9 bytes at the front of each record to hold a Delete Flag and an Index
and must be taken into account when defining the xTable size.

Size = NoOfRecords*(RecordLength + 9)

Note:- The languageONE reWriter cannot infer indexed table elements {ie. Item[1] = 1} coded prior to the
BIND command.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 14

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

ARRAYS (Integer)
An Array – introduced in Version V2.10 - is a contiguous no of integers (all numbers are represented as
qwords in languageONE) with memory being allocated at runtime. They do not have the control block
normally associated with a languageONE data structure and therefore must be accessed via the
ARRAYS.LIB package. As of version V3.01 multi-dimension arrays may be coded.

A new Quick Sort algorithm has been coded for Arrays in order to optimise the sort speed of integers. Only
single-dimension arrays may be sorted. The 'TABLES' section is the area of the program where Arrays
may be described.

InsertArray

LINUX @InsertArray

WINDOWS @InsertArray

@InsertArray ArrayName,6,12,16

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 15

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

SIMPLE INTEGER ARITHMETIC
There are 6 simple arithmetic commands in languageONE that are not part of the NUMBERS.o object
package but available to every languageONE program. It must be noted though that they have an almost 1 to
1 relationship to their underlying assembler equivalents and are not error checked in anyway.

If you add 1 to 9,223,372,036,854,775,807 you will get −9,223,372,036,854,775,808.
However, if you are careful, they are the best way to use integers

Equals

LINUX @integers_eq w_MyNumber,123

WINDOWS @integers_eq w_MyNumber,123

COOKED w_MyNumber = 123

Addition

LINUX @integers_add w_MyNumber,123

WINDOWS @integers_add w_MyNumber,123

COOKED w_MyNumber = w_MyNumber + 123

COOKED(Shorthand) w_MyNumber =+ 123

Subtraction

LINUX @integers_sub w_MyNumber,123

WINDOWS @integers_sub w_MyNumber,123

COOKED w_MyNumber = w_MyNumber - 123

COOKED(Shorthand) w_MyNumber =- 123

Multiplication

LINUX @integers_mul w_MyNumber,123

WINDOWS @integers_mul w_MyNumber,123

COOKED w_MyNumber = w_MyNumber * 123

COOKED(Shorthand) w_MyNumber =* 123

Division

LINUX @integers_div w_MyNumber,123

WINDOWS @integers_div w_MyNumber,123

COOKED w_MyNumber = w_MyNumber / 123

COOKED(Shorthand) w_MyNumber =/ 123

Note:- that for this integer function, the remainder will be lost.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 16

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Calculation

LINUX @integers_calc w_MyNumber,=,128,*,64,-,32

WINDOWS @integers_calc w_MyNumber,=,128,*,64,-,32

COOKED w_MyNumber = 128 * 64 - 32

Applies each operation to the destination field working from left to right of the source integers.

Setting precedents
The order of an integer operation my be directed by way of square brackets. As an example:- A = [[8 +
B] * 3] + 5 will direct languageONE to evaluate the [8 + B] 1st,multiply the result by 3 2nd and finally
add 5 to the answer. The "reWRITER" will enable this by developing the operation one by one within a
macro and apply those values to the final calculation. The original line of code will be commented and
replaced by the system developed macro name.

In essence square brackets say to languageONE, do this 1st.

LOGICAL EXPRESSIONS
There are 3 logical expressions in languageONE that are not part of the NUMBERS.o object package but
available to every languageONE program. It must be noted though that they have an almost 1 to 1
relationship to their underlying assembler equivalents and are not error checked in anyway.

Logical And

LINUX @integers_and w_MyNumber,Number/Literal

WINDOWS @integers_and w_MyNumber,Number/Literal

Logical Or

LINUX @integers_or w_MyNumber,Number/Literal

WINDOWS @integers_or w_MyNumber,Number/Literal

Logical Xor

LINUX @integers_xor w_MyNumber,Number/Literal

WINDOWS @integers_xor w_MyNumber,Number/Literal

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 17

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

CONSTANTS
are a way of giving a name to a value. It is good programming practise and will save you a lot of
headaches further on. As an example a record length may be used in several places and so by replacing
the value with the constant c_RecordLength the record length can be changed in one spot (at its
definition) and be correct in every use of the constant.

Linux
Constants are defined by the use of the %define directive.

examples:-
%define c_RecordLength 47
%define c_NoOfRecords 1024
%define c_Size 47*1024
%define c_Size (47 * 1024) + 88
%define c_Size c_RecordLength*c_NoOfRecords

Windows
Define constants with the EQU and preceed the constant with a “%” (percentage sign) when used
following its definition.

examples:-
c_RecordLength EQU 47
c_NoOfRecords EQU 1024
c_Size EQU 47 * 1024
c_Size EQU (47 * 1024) + 88
c_Size EQU %c_RecordLength
c_Size EQU %(c_RecordLength*c_NoOfRecords)

note:- When 2 constants are used together bracket them and use only a single % sign

Inline Assembler
There is no package required to include assembler code within a languageONE program. As noted
languageONE IS assembler, but for the reWRITER to ignore assembler code in should be enclosed
within “@BEGIN_ASSEMBLER” and “@END_ASSEMBLER” keywords.

@begin_assembler (Begin.Assembler with language Pack 1)
 push rax
 pop rbx
@end_assembler (EndAssembler with language Pack 1)

may be coded anywhere following the %include 'BEGIN.INSTRUCTIONS' directive. Data should be
coded following the correct use of section directives.

LINUX Section .data
 @insertword w_Hello, 5,”Hello”
Section .text

WINDOWS .data
 @insertword w_Hello, 5,”Hello”
.code

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 18

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

LANGUAGEONE RUNTIME SYSTEM
Introduction

languageONE delivers functionality via keywords. Each keyword is an assembler macro that is used to
manage the parameters and make a call to one of the languageONE object modules. (In this way, if a
particular object module is not required you will not have to link it in). Keywords are case-Insensitive
such that @CURSOR, @cursor or even @CuRsOr are acceptable forms of coding.

ARRAYS.LIB Array processing services

COMMON.LIB Common/General processing services

DECISIONS.LIB Decision making services

FILES.LIB File Handling Services

NUMBERS.LIB Fixed point number services

STDIO.LIB Standard Console services

TABLES.LIB Table processing services

WORDS.LIB AlphaNumeric processing services

WWW.LIB Network peocessing services

XTABLES.LIB Xtable processing services

Note:- the languageONE object modules are delivered in a library name languageONE.lib and it is this that is
linked to your program.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 19

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

COMMON.LIB
The COMMON.LIB module provides generalised routines for languageONE.

Get the current date

LINUX @Date_Get

WINDOWS @Date_Get

@date_get noofdays,datestring

Returns the current number of days and date

noofdays is an integer value defined as the number of days from the linux epoch (1970/01/01).
datestring is a 10 character word containing a date formatted as CCYY/MM/DD

Number of Days is useful in the processing of past or future dates. A @date_get will return the no of
days associated with the current date. By adding/subtracting a numeric value to the no of days and
then performing a @date_datefromdays a future or past date can be calculated.

Date from Days

LINUX @Date_DateFromDays

WINDOWS @Date_DateFromDays

@date_datefromdays noofdays,datestring

Returns the date associated with the No Of Days passed.

Days from Date

LINUX @Date_DaysFromDate

WINDOWS @Date_DaysFromDate

@date_dayefromdate noofdays,datestring

Returns the No Of Days associated with the Date passed.
This function should be used when validating a date. If the date is invalid then the system field
ERROR_CODE will be set to 1

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 20

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Seconds

LINUX @Date_Seconds

WINDOWS @Date_Seconds

@date_seconds seconds
@InsertNumber Seconds, 0,'99999999999999999999999999'

Returns the no of seconds from the linux epoch (1970/01/01).

@date_seconds is useful in performing “stop-watch” functions. Store the no of seconds prior to
starting a process and subtract it from the no of seconds at the process end to produce an elapsed
time.

Timer

LINUX @Date_Timer

WINDOWS @Date_Timer

@date_timer seconds,milliseconds

@InsertNumber seconds, 0,'99999999999999999'
@InsertNumber milliseconds, 0,'.999999'

@date_timer is useful in performing “stop-watch” functions that require more accuracy than
@date_seconds

Run (Batched)

LINUX @Run

WINDOWS @Run

@Run Command,ResponseFileHandle

This keywords allows a program to run another program. Filename must be either a binary
executable, or a script. Note that in this release a fully qualified name ie “path/program” must be
provided. Ie “/usr/bin/nasm”

 The macro returns a system variable, CHILD_PID defining the new running process's 'Process
Identification Number'

 The macro returns a FileHandle that duplicates the child process's STDOUT and STDERR. This
file should not be opened by the calling process but must be closed by it. Read this file to collect
the called programs output

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 21

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Run (Interactive)

LINUX @Run

WINDOWS @Run

This keywords allows a program to run an interactive program (generally a terminal). Note that in this
release a fully qualified name ie “path/program” must be provided. Ie “/usr/bin/xterm”

NOTE:- languageONE will decide whether a BATCH or an INTERACTIVE call is being made by
noting the number of parameters that are passed.

Wait

LINUX @Wait

WINDOWS @Wait

@Wait ProcessId

This keyword, followed by a Process Identification Number,will suspend your program until the
program identified by integer has completed

[WINDOWS]
When running a program on a windows system, it has been found that buffers for StdOut are NOT
cleared when StdOut is closed or the sub-ordinate program terminates. In the absence of a setbuf or
fflush call being available the following work around may be used:-

 Define a file
@insertfile c_LF,STDOUT

 Set the handle to StdOut (Note that the file does not have to be opened)

@begin_assembler
push qword[StdOutHandle]
pop qword[STDOUT_HANDLE]

@end_assembler

 Write to this file rather than using display statements
@files_write STDOUT,'Your text goes here'

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 22

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

STDIO.LIB
The STDIO.LIB object module provides input/output routines for the Linux terminal. Fields used in a
STDIO call may be literals, words from the dictionary and numbers from the matrix. The following
keywords are supported:-

Cursor

LINUX @Cursor

WINDOWS @Cursor

@Cursor row,column

positions the cursor on the screen detailed by the row and column parameters. ie.
@Cursor 03,05

Note:- cursor sets the values of the system variable c_Cursor. You must perform a “@display
c_Cursor” for the cursor to be positioned.

Display

LINUX @Display

WINDOWS @Display

@Display field,field,field,field,….

Displays the listed fields on the screen. Any number of fields may be passed. A useful field to use here
could be the predefined field LF. This is the linefeed character and when used as the last field of the
display keyword will trigger a linefeed following the last field listed.

Display Line

LINUX @Display_Line

WINDOWS @Display_Line

@Display field,field,field,field,….

Displays the listed fields on the screen and follows each one with the linefeed character. It is the
equivalent of coding “display field,LF,field,LF,field,LF...”

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 23

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Display at

LINUX @Display_At

WINDOWS @Display_At

@Display_At 05,06,”Hello World”

Displays the listed field on the screen at the specified row and column position. It is equivalent of
coding: “cursor 03,02” followed by “display c_Cursor,field”. Note:- it makes no sense to display
more than one field

Acceptline

LINUX @Acceptline

WINDOWS @Acceptline

@Acceptline w_Input

Accepts the listed field on the screen from the current cursor position. Only a single field at a time can
be accepted. The field is terminated when the <ENTER> key is pressed.

Acceptline.at

LINUX @Acceptline_at

WINDOWS @Acceptline_at

@Acceptline_At 05,06,w_Input

Accepts the listed field on the screen at the specified row and column position. It is equivalent of
coding: “cursor 03,02” followed by “acceptline c_Cursor ,field”

Accept at

LINUX @Acceptt_at

WINDOWS @Accept_at

@Accept_At 05,06,w_Input

Accepts the listed field on the screen at the specified row and column position. This differs from the
other accept keywords in that it restricts the number of characters entered to the size of the receiving
field. It also reports any function key that has been pressed. It is useful when full screen applications
are being developed.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 24

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Screen Attributes
The following screen attributes may be “display”ed to manage a terminal.

Terminal Colours

Foreground Background

v_BlackFG v_WhiteFG v_BlackBG v_WhiteBG

v_DarkGreyFG v_LightGreyFG v_DarkGreyBG v_LightGreyBG

v_RedFG v_LightRedFG v_RedBG v_LightRedBG

v_GreenFG v_LightGreenFG v_GreenBG v_LightGreenBG

v_YellowFG v_LightYellowFG v_YellowBG v_LightYellowBG

v_BlueFG v_LightBlueFG v_BlueBG v_LightBlueBG

v_MagentaFG v_LightMagentaFG v_MagentaBG v_LightMagentaBG

v_CyanFG v_LightCyanFG v_CyanBG v_LightCyanBG

v_DefaultFG v_DefaultBG

Attributes Graphics Characters

v_Bold v_ResetBold v_BottomRight v_TopRight

v_Dim v_ResetDim v_BottomLeft v_TopLeft

v_Underlined v_ResetUnderlined v_LeftMiddle v_RightMiddle

v_Blink v_ResetBlink v_BottomMiddle v_TopMiddle

v_Reverse v_ResetReverse v_Cross v_Line

v_Hidden v_ResetHidden v_Bar

v_ResetAll v_ClearScreen

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 25

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Returned by @Accept_At

Constant Value
c_RETURN 000
c_FUNCTIONKEY1 001
c_FUNCTIONKEY2 002
c_FUNCTIONKEY3 003
c_FUNCTIONKEY4 004
c_FUNCTIONKEY5 005
c_FUNCTIONKEY6 006
c_FUNCTIONKEY7 007
c_FUNCTIONKEY8 008
c_FUNCTIONKEY9 009
c_FUNCTIONKEY10 010
c_FUNCTIONKEY11 011
c_FUNCTIONKEY12 012
c_ALT 013
c_ARROWUP 014
c_ARROWDOWN 015
c_ARROWRIGHT 016
c_ARROWLEFT 017
c_END 018
c_HOME 019
c_INSERT 020
c_ENDOFFIELD 021
c_ESCAPE 027
c_BACKSPACE 127
c_NONE 999

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 26

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

WORDS.LIB
The WORDS.LIB module provides string handling routines. They function from left (source) to right
(destination). Although there is “_copy” keyword, a copy is always done when a second field is coded, such
that you may code- “words.uppercase w_Name” to change the characters in w_Name to upper case and you
may also code “words.uppercase w_Name1,w_Name2 to copy the w_Name1 to w_Name2 and change
w_Name2 to upper case. In this example w_Name1 would be left unchanged. The following keywords are
supported:-

Copy

LINUX @Words_Copy

WINDOWS @Words_Copy

@Words_Copy Source,Destination

This will copy the number of characters held in Sourcefield to Destinationfield. Reminder: If the
Sourcefield is shorter than the Destination field, NO padding will take place. Note that although
languageONE will accept “@words_copy w_Name”, it does not make sense to do so.

Pad

LINUX @Words_Pad

WINDOWS @Words_Pad

COOKED Word1 = Word2

@Words_Pad Source,Destination

Performs the same function as COPY but will pad a longer Destinationfield with spaces.
The sourcefield may be a numeric field and it is this routine that may be used to convert numbers to
alphanumerics.

Uppercase

LINUX @Words_Uppercase

WINDOWS @Words_Uppercase

@Words_Uppercase Source,Destination(Optional)

Will copy the Sourcefield to the Destination field and convert the Destinationfield to all upper case
characters. Coding “@Words_uppercase Sourcefield” will convert the Sourcefield to all upper case
characters

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 27

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Lowercase

LINUX @Words_Lowercase

WINDOWS @Words_Lowercase

@Words_Lowercase Source,Destination(Optional)

Will copy the Sourcefield to the Destination field and convert the Destination field to all Lower case
characters. Coding “@Words_Lowercase Sourcefield” will convert the Sourcefield to all Lower case
characters

Insert

LINUX @Words_Insert

WINDOWS @Words_Insert

@Words_Insert Source,Destination

Inserts the Sourcefield into the Destinationfield by moving Destination characters to the right. This
works well when qualified. ie- @words_insert “RET”,{Destinationfield,5} says insert the word “RET”
into the Destination field starting at the 5th character

Find

LINUX @Words_Find {“text”,Counter},”Biblical Text”

WINDOWS @Words_Find <<”text”,Counter>>,”Biblical Text”

Locates the phrase “text” in the literal and returns the character position in counter

Replace

LINUX @Words_Replace {“ret”,”rog”},Word1

WINDOWS @Words_Replace <<”ret”,”rog”>>,Word1

Locates all occurrences of “RET” in word1 and replaces them with “ROG”

Environment

LINUX @Words_Environment

WINDOWS @Words_Environment

@Words_Environment DestinationField
A special WORDS function that will return the command line parameters and store them in
Destination field

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 28

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Length

LINUX @Words_Length

WINDOWS @Words_Length

@Words_Length Word,Length

A special WORDS function that will return the length of a word

String to record

LINUX @Words_StringToRecord

WINDOWS @Words_StringToRecord

@Words_StringToRecord String, Record

A WORDS function that will populate a record from a string. This is required because fields are
manage by a control structure and records being a collection of fields are managed by multiple control
structures

Record to string

LINUX @Words_RecordToString

WINDOWS @Words_RecordToString

@Words_RecordToString Record,String

A WORDS function that will populate a string from a record. This is required because fields are
manage by a control structure and records being a collection of fields are managed by multiple control
structures

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 29

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

NUMBERS.LIB
The NUMBERS.LIB module provides fixed point number handling routines. They function from right (source)
to left (destination). Note that although NUMBERS.LIB can handle integers, the 6 inbuilt integer functions
(@integer_eq, @integer_add, @integer_sub, @integer_mul, @integer_div, @integer_calc) are more efficient.
Remembering the integer functions have no error correction it is best to use NUMBERS.LIB for integers when
range boundaries are expected to be crossed.

 Unsigned: All numbers will be considered as signed
 Signed: From −9,223,372,036,854,775,807 to 9,223,372,036,854,775,807

Equals

LINUX @Numbers_eq n_No, {123,”9.99}

WINDOWS @Numbers_eq n_No, <<123,”9.99”>>

COOKED n_No = {123,”9.99}

@Numbers_eq n_Dest,n_Src

Sets the value of Destinationfield to Sourcefield. The sourcefield in this case may be an alphanumeric
field and it is this routine that may be used to covert alphanumerics to numbers

Addition

LINUX @Numbers_add n_No, {123,”9.99}

WINDOWS @Numbers_add n_No, <<123,”9.99”>>

COOKED n_No = n_No + {123,”9.99}

@Numbers_add n_Dest,n_Src

Adds the value of Sourcefield to Destinationfield

Subtraction

LINUX @Numbers_sub n_No, {123,”9.99}

WINDOWS @Numbers_sub n_No, <<123,”9.99”>>

COOKED n_No = n_No - {123,”9.99}

Subtracts the value of Sourcefield from Destinationfield

Multiplication

LINUX @Numbers_mul n_No, {123,”9.99}

WINDOWS @Numbers_mul n_No, <<123,”9.99”>>

COOKED n_No = n_No * {123,”9.99}

Multiplies the Destinationfield by the Sourcefield

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 30

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Division

LINUX @Numbers_div n_No, {123,”9.99}

WINDOWS @Numbers_div n_No, <<123,”9.99”>>

COOKED n_No = n_No / {123,”9.99}

Divides the Destinationfield by the Sourcefield

Overloading
A feature of the NUMBERS.LIB package is that these macros may be “overloaded”, meaning that more
than 1 Sourcefield may be coded. ie:-

Numbers.add Destinationfield,2,4,16,32
This would add 2 then 4 then 16 and then 32 (Total of 54) to the Destinationfield

This can be a useful in many ways. Take for example cubing a number.

With the following defined in the matrix
Insertnumber w_no1, 3
Insertnumber w_no2, 3

You can overload the multiplication to effect a cubing of the number
numbers.mul (w_no1,w_no2,w_No2)

Calculation

LINUX @Numbers_calc n_No,=,{123,”9.99},+,1.23,-,n_No2

WINDOWS @Numbers_calc n_No,=,<<123,”9.99”>>,+,1.23,-,n_No2

COOKED n_No = n_No + {123,”9.99} + 1.23 - n_No2

Applies each operation to the destination field working from left to right of the source numbers
(Number precedence will be followed if square brackets are used).

Random

LINUX @Numbers_Random n_No

WINDOWS @Numbers_Random n_No

Returns a random number in the range 0 thru 65,536.

Note: that this function is not intended to return a random number that can be relied upon for robust
applications. It merely takes the number of nano-seconds, splits it into 2 16bit words, xor's the 2 and
delivers the result. By definition it has the range of 0 thru 65,536. You may restrict its range by ANDing it
with a mask ie: to obtain a number between 0 and 6 (ie a throw of a dice) ADD the returned value by
0110B. If a more “industrial strength” random no is required it can be obtained in:
Linux - investigate the /dev/<u>random file system
Windows - refer CryptoAPI

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 31

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

DECISIONS.LIB
The DECISIONS.LIB module provides for decision making in languageONE. In reality it performs one
function, that of a compare. The many manifestations of that are handled by the macros themselves.

The following table describes operation equivalences. Only Constants are allowed in Windows but the
reWRITER will handle conversion from the literal [=,!=, etc] to the Constant [EQ,_NEQ,etc]
Equals _EQ =

isNOTEqualTo _NEQ !=

isLessThan _LT <

isNOTLessThan _NLT !<

isGreaterThan _GT >

isNOTGreaterThan _NGT !>

In _IN

Not In _NIN

You are free to add to this table by editing DECISIONS.INC and describing your own operations name

Note: for the decisions module:-

RAW As Shown

COOKED No Commas required

IF statements

@IF w_no1,=,w_no2
Do Something

@ELSE
Do Something Else

@END.IF

This is a fairly standard If statement and is no different from most languages. There is no elseif statement
in languageONE because it is easily handled. ie.

@IF w_no_1,=,w_no2
Do Something

@ELSE
@IF w_Alpha,=,“A”

Do Something
@ELSE

Do Something Else
@END.IF

@END.IF

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 32

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

IF statements...cont

Equally, you could use the line splitting character

@IF w_no_1 = w_no2
Do Something

@ELSE | @IF w_Alpha = “A”
Do Something

@ELSE
Do Something Else

@END.IF
@END.IF

@_IF, @_OR, @_AND, @_END

Compound Ifs are defined as those that contain '.or' or '.and' statements. They must begin with a '.if' and
be terminated with a '.end'

In order to understand the .AND and the .OR statement you must consider how languageONE functions.
An IF statement will set a flag as either TRUE of FALSE. Subsequently an .OR statement will proceed if
the flag is so to FALSE (no need to do anything if the previous IF returned a TRUE) and set the same
flag to either TRUE or FALSE. Similarly an .AND statement will proceed if the flag is set to TRUE (no
need to do anything if the previous IF returned a FALSE) and set the same flag to either TRUE or
FALSE.

You must be careful with this as languageONE has no way (at present) of bracketing OR's and AND's
(remember brackets are simply removed) and cannot evaluate something like:-
IF (A=B AND C=D) OR (A=C AND (B=D OR E=F))

The following will achieve the same thing. It's just a little bit cumbersome at present. This will be
addressed in a later release.

@_IF A = B
@_AND C = D
@_END

Do Something
@END.IF

@_IF B = D
@_OR E = F
@_AND A = C
@_END

Do the same Thing
@END.IF

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 33

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

the _IN operator
The _IN operator can be used to interrogate lists. Although it is simply a compound “if” it allows for
perhaps cleaner coding. Note though that fixed point numbers cannot be coded with the _IN operator as
this would result in a double set of braces.

@IF w_No1 _IN {1,2,4,8,16,31,64} [YES]
@IF w_No1 _IN {{123,'9.99},{456,'9.99}} [NO]

the _NIN operator
The _NIN operator can also be used to interrogate lists. It does in fact invoke the _IN decision and then
negates the answer. ie.

@IF w_No1 _NIN {1,2,4,8,16,31,64}

TEST statements

This is a fairly standard statement seen in most languages.
In COBOL it is EVALUATE,
In PASCAL it is CASE OF,
In C it is SWITCH/CASE,
In BASIC it is SELECT CASE etc etc.

It takes the following forms in languageONE.

@BEGIN.TEST w_No1
@WHEN < 1

Do Something
@WEND

@WHEN < 2
Do Something

@WEND

@OTHERWISE
Do Something Else

@END.TEST

@BEGIN.TEST c_TRUE
@WHEN A = B

Do Something
@WEND

@WHEN C > D
Do Something

@WEND

@WHEN E !> D
 Do Something
@WEND

@END.TEST

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 34

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

TEST statements...cont

@_WHEN, @_OR, @_AND, @_END

Compound Whens are defined as those that contain '.or' or '.and' statements. They must begin with a
'.when' and be terminated with a '.wend'

@BEGIN.TEST c_TRUE
@_WHEN A = B
@_AND X = Y
@_END

Do Something
@WEND

@_WHEN C > D
@_AND J = K
@_END

Do Something
@WEND

@_WHEN E !> D
@_OR Z = W
@_END

Do Something
@WEND

@OTHERWISE
 Do Something else

@END.TEST

_IN and _NIN may be used when testing for TRUE

@BEGIN.TEST c_TRUE
@WHEN _IN {1,2,3,4,5}

Do Something
@WEND

@WHEN _NIN {1,2,3,4,5}
Do Something Else

@WEND
@END.TEST

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 35

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

LOOPS
The is no module providing functionality for looping. It is built into the macros themselves as they are only a
comparative jump statement. They take 2 forms:-

@repeat_if
@repeat_while

It should be noted that @repeat_if and @repeat_while are functionally equivalent. They are both
provided to suit programming style.

@Repeat_if <condition>
Do Something

@end_repeat

A @repeat_if statement has a built in condition which is evaluated at the top of the loop.

NOTE:-
When multiple conditions are needed you may use the system supplied exitRepeat field. This flag is always
tested at the top of the loop and an exit performed if it is found to be true. Note that any code following the
exit will still be executed so it is advisable to code an else to allow your instructions to execute correctly.
Note that @_OR & @_AND are not suitable for loops. (This will be revisited in a later version)

NOTE:-
the @EXIT_REPEAT macro has been modified to set the exitRepeat flag to true.

@repeat_while 1 = 1
@if B = 2

@EXIT_REPEAT
@else

Do Something
@end.if

@end_repeat

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 36

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

LOOPS….cont
@repeat_for

@Repeat_for <counter>,<start>,<stop>,<step>
Do Something

@end_repeat

A @repeat_for statement has a built in count function which is evaluated at the top of the loop. You
provide the counter, the starting value, the ending value and the step (if other than 1)

When multiple conditions are needed you may use the system supplied exitRepeat field. This flag is
always tested at the top of the loop and an exit performed if it is found to be true. Note that any code
following the exit will still be executed so it is advisable to code an else to allow your instructions to
execute correctly. Note that .OR & .AND are not suitable for loops. (This will be revisited in a later
version)

@Repeat_for Ctr,1,128,2
@if A = 1

@EXIT_REPEAT
@else

Do Something
@end.if

@end_repeat

Note:-
 when the start value is less than the stop value then the loop will subtract the step

value from the counter. You will be counting backwards.
 When the start value is equal to the stop value the loop will add to the step value

unless a -ve step value is coded

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 37

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

SUB ROUTINES

Overview
Using Sub Routines is the common programming practice of breaking up programs into smaller and
more manageable tasks. They start with the 'keyword' @BEGIN_SUB followed by a unique name that
you choose. They end with the 'keyword' @_END_SUB followed by the same unique name you have
chosen. They may also contain an @EXIT_SUB (followed by the same unique name) to exit the sub
routine depending on your coding decisions. To invoke a Sub Routine you use the 'keyword' @CALL
followed by the Sub Routines name. Sub Routines may invoke other Sub Routines.

When running under a Linux operating system, selecting the debug option for the reWriter will cause
the program to output a message to STDOUT when entering or exiting a subroutine.

Passing parameters
Version 3.01 developed the use of numeric parameters for Subroutines and Functions. It is implemented
by the @CALL and the @USING macros. The Call is coded as follows:-

RAW @Call A-SubRoutine,n_Num,3

COOKED @Call A-SubRoutine n_Num,3

Note that in the raw version of languageONE a comma is required after the Subroutine name.

The @CALL macro must be matched by a @USING macro immediately following the @BEGIN_SUB
macro, as follows:-

@BEGIN_SUB A-SubRoutine
@USING {_arg1,’99.99’},{_arg2,’9’}

each argument should be enclosed in braces and include a picture definition. As of version 3.01 the
datanames are NOT local to the subroutine and must be unique within the program.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 38

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

FUNCTIONS

Boolean Functions
Boolean Functions are available in languageONE. They start with the 'keyword' @BEGIN_FUNCTION
followed by a unique name that you choose. They end with the 'keyword' @END_FUNCTION
followed by the same unique name you have chosen. They may also contain an @EXIT_FUNCTION
(followed by the same unique name) to exit the function depending on your coded decisions.

Boolean functions are automatically set to return FALSE while a TRUE result may be indicated by
setting RETURN_CODE to TRUE.

They maybe coded after the following keywords:-
@IF – @OR – @AND - @REPEAT_IF (@REPEAT_WHILE) - @WHEN

ie:-

@if valid_date
display “A valid date has been entered”

@end.if

When running under a Linux operating system, selecting the debug option for the reWriter will cause
the program to output a message to STDOUT when entering or exiting a subroutine.

Numeric Functions
Version 3.01 expanded functions to return numeric values and to be passed parameters (refer to
SubRoutines above). When coding a numeric function you should include a picture following the
function name:-

f_Squared,’999999’

In this way a field called df_Squared, using the picture that has been coded, will be created. For
examples:-

@BEGIN_FUNCTION f_Squared,’999999’
@USING {_arg1,’999’}

@INTEGERS_EQ df_Squared,_arg1
@INTEGERS_MUL df_Squared,_arg1

@END_FUNCTION

RAW @FUNCTION I,f_Squared,{3,'9'}

COOKED I = f_Squared(3)

Note that I will be populated with df_Squared in the above example

RAW @IF {f_IsNumeric,3}

COOKED @IF {f_IsNumeric,3}

Note that in an IF/AND/OR statement the function should set RETURN_CODE to true or false

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 39

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

FILES.LIB
The FILES.LIB module provides file access routines for languageONE. It manages both sequential, random,
indexed and directory access. The following keywords are supported:-

Open
A file must be opened before it is able to be accessed. (and closed after it is not needed). This is
performed by the keyword

@files_open I_Name, Action is used to perform this action, where Actions
consist of:-

 $read The file will be available for reading only
 $write The file will be available for writing to only
 $readwrite The file will be available for both reading and writing

When a file is opened write or readwrite you may select starting the write operations from the beginning
of the file (thereby overwriting the file) or at the end of the file (appending records to the file). This is
achieved by adding (with a + sign) the keywords “$beginning” or “$end”. This would look like:-

@files_open WorkFile1,$write+$beginning

A file may be opened for exclusive use. This is done by adding (with a + sign) the keyword “$lock”. This
would look like

@files_open WorkFile1,$write+$beginning+$lock

Read
There are two forms of the read keyword depending on if you are reading into a record or a series of
fields. They are:-

 @files_read I_Name, record, <optional record no(for files of records)>

ie: @files_read File, Record,Record_No will yield the same result
as: @integers_eq Record_No,1
 @files_read File,Record

 @files $read, I_Name, field, field, field…..

Write
There are two forms of the write keyword depending on if you are writing a record or writing a series of
fields. They are:-

There are two forms of the write keyword depending on if you are reading into a record or a
series of fields. They are:-

 @files_write I_Name, record, <optional record no(for files of records)>

ie: @files_write File, Record,Record_No will yield the same result
as: @integers_eq Record_No,1
 @files_write File,Record

 @files $write, I_Name, field, field, field…..
Delete

Deletion may only take place when files are accessed randomly (with a record). The command takes the

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 40

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

form:-

@Files_delete I_Name, record,<optional record no(for files of records)>
and is managed by virtue of the Record No associated with the record. I_Name_NO
Although languageONE will delete the record regardless, it is always good practise to perform a read
operation first. This make it easier to assist any user who's intention it is to delete the record.

ie: @files_delete File, Record, Record_No will yield the same result
as: @integers_eq Record_No,1

@files_delete File, Record

NOTE:- Records are never physically deleted from a file. languageONE reserves the 1st character in a
randomly organised file and maintains its value as either:-

▪ 0x01 represents a “live” record
▪ 0x00 represents a deleted record

These records may be restored by editing the file and altering this value to 0x01

NOTE:-Xtables contains a LOAD and UNLOAD function which makes simple the process of purging
deleted records.

Close
Files must be closed when your program terminates. The command takes the form:

@files_close I_Name

Copy
The files module provides a very thin wrapper that allows in kernel copying of files. This is a more
efficient method of copying entire files as it is all done within the kernel (as opposed to user space)

@files_copy ExternalNameFrom, ExternalNameTo

Note:- Use Dictionary words.
@insertword FileName1, 09,{'External Name',00h}
@insertword FileName2, 09,{'External Name',00h}

Replcae braces in the above if coding in raw Windows format

Rename
The files module provides a very thin wrapper that allows for file renaming.

@files_rename ExternalNameFrom, ExternalNameTo

Note:- Use Dictionary words.
@insertword FileName1, 09,{'External Name',00h}
@insertword FileName2, 09,{'External Name',00h}

Replcae braces in the above if coding in raw Windows format

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 41

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Eemove
The files module provides a very thin wrapper that allows for file deletion.

@files_remove ExternalName

Note:- Use Dictionary words.
@insertword FileName, 09,{'External Name',00h}

Replcae braces in the above if coding in raw Windows format

Chdir
This changes the current directory to that of DirectoryName. Relative or Absolute.

@files_chdir DirectoryName

Note:- Use Dictionary words.
@insertword DirectoryName, ??,{'External Name',00h}

Replcae braces in the above if coding in raw Windows format

Getcwd
@files_getcwd DirectoryName

Returns an absolute path of the current work directory

RANDOM ACCESS FILES
The following are commands that are available to random and indexed access files only.

Start
Because files may contains deleted records and holes a start command will return the 1st valid record and
its record number. By initially providing the record number you will determine the starting position. The
command takes the form:

@files_start I_Name, record, <optional record no>

is managed by virtue of the Record No associated with the record. I_Name_NO

ie: @files_start File, Record,Record_No will yield the same result
as: @integers_eq Record_No,1

@files_start File, Record
NOTE:-If you create a random access file with 2 records (1 & 3) then a “Hole” will exist in the
file. That is a vacant spot in the file containing a record of nulls.

Next
Following a start, the next routine will return the next valid record (excluding deleted records and
holes). The command takes the form:

@files_next I_Name, record

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 42

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

DIRECTORIES
The following are commands that are available when reading a directory.

Open
A directory is given in the insertfile macro or may be dynamically assigned during program
procedures.

Read
Directories are read sequentially from start to end. Note that the order of files/directories returned
may not be consistent or as you may expect. The following RETURN_CODE may be interrogated
following this call

 when = 00 : [Linux only] Unknown Entry
 when = 01 : [Linux only] FIFO Entry
 when = 02 : [Linux only] Character Device
 when = 04 : Directory
 when = 06 : [Linux only] Block Device
 when = 08 : File
 when = 10 : [Linux only] Symbolic Link
 when = 12 : [Linux only] Socket
 when = 14 : [Linux only] WhiteOut

Close

RECORD LOCKING
Record locking is performed slightly differently in the Windows version of languageONE as opposed to
the Linux version.

Linux : Advisory file and record locking is used to coordinate independent processes. Files and records
are not actually locked but there is an agreement between processes that each process will adhere to the
protocol. When a process wishes to write a record it is obliged to read the record, lock it , do the write
and then unlock it. A second process that attempts to lock the record will receive a warning from the
lock function, however reads and writes will continue to function. It is the application logic that supports
the locking function.

Windows : Mandatory locking is where the I/O subsystem enforces the locking protocol. A locked record
will return a file status of LOCKED whenever an application attempts to read or write that record.

It would have been possible to replicate mandatory locking within languageONE for Linux but advisory
locking is the preferred protocol. It allows read access where required while leaving the write access to
the application. The result of the implementation of locking within languageONE means that a Windows
program would need to be coded slightly differently from a Linux version, however it is possible to do
the coding such that the Windows version would perform as expected on a Linux system (but not visa-
versa).

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 43

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Lock

Only files of records can be locked.

@Files_lock I_Name, record, <optional record no>
is managed by virtue of the Record No associated with the record. I_Name_NO

ie: @files_lock File, Record,Record_No will yield the same result
as: @integers_eq Record_No,1

@files_lock File, Record

Unlock

Only files of records can be unlocked.

@Files_unlock I_Name, record, <optional record no>
is managed by virtue of the Record No associated with the record. I_Name_NO

ie: @files_unlock File, Record,Record_No will yield the same result
as: @integers_eq Record_No,1

@files_unlock File, Record

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 44

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

TABLES.LIB
Tables, as described in previous parts of this manual, could be visualised as internal representations of
random files (although they are more than that). They are however, apart from a need to open or close files,
similar in the fact that they must be constructed of records and these records are read (rget) and written
(rput). The commands take the following form:

Bind
@tables_bind WorkTable, A01_Record, Index1, Index2, Index3….

this keyword has been described previously in this manual

Rget
@tables_rget WorkTable, Record_No/Index

loads the record defined by the record no/index from the table
Rput

@tables_put WorkTable, Record_No/Index

places the record defined by the record no/index into the table
Fget

RAW @tables_fget WorkTable,FieldNo,FieldName,Index,Index

COOKED A = FieldName[Index]

loads the field defined by the field No from the table, where

▪ WorkTable is the name of the table
▪ FieldNo is the field position in the record
▪ FieldName is the name of the recipient field. It does NOT have to be the

corresponding field in the record but must have identical properties.
▪ Index,Index,Index...the indexes that define the records (containing the field)

location in the table
Fput

RAW @tables_fput WorkTable,FieldNo,FieldName,Index,Index

COOKED FieldName[Index] = A

stores the field defined by the field No from the table, where

▪ WorkTable is the name of the table
▪ FieldNo is the field position in the record
▪ FieldName is the name of the sending field. It does NOT have to be the corresponding field in

the record but must have identical properties. Literals are acceptable as long as they also have
identical properties.
 Numeric literals. You need to provide a picture over-ride to match the receiving fields size.

ie. {123,'999'}
 Alpha fields. Field must be the same size as that defined by the record.

▪ Index,Index,. the indexes that define the records (containing the field) location in the table

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 45

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Sort
@tables_sort WorkTable, StartPosition, NoOfCharacters

NOTE: Only single dimension tables may be sorted
NOTE: A sorted table that is not entirely populated may not return the desired
result when searched.

Search
@tables_search WorkTable, StartOfKey, EndOfKey, KEY, Index

returns the record associated with the provided key along with the Index used to locate the record. If
more than one record exists, the 1st record will be returned and the STATUS field will be set to
DUPLICATES

NOTE: Only single dimension tables may be searched
NOTE: A sorted table that is not entirely populated may not return the desired
result when searched.

Like files, when accessing tables languageONE provides a 'STATUS' field. It is defined as
TableName_STATUS. Thus the status field for the table A01_Table would be A01_Table_STATUS. This
field can be checked each time a file is accessed.

Present values are:-
22(DUPLCATES) = More than one table element exists for this key
23(INVALIDKEY) = Invalid Key

languageONE maintains a field named TableName_UBOUND which stores the location of the highest slot
within a table. It may be accessed but it must be remembered that UBOUND works in only a single
dimension. That is, if you have a table indexed as 2,2,2 then if the table is full, UBOUND would contain a
value of 8.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 46

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

XTABLES.LIB
Xtables, are tables on steroids, or more precisely, a optimised facility to work with very large files. On a
functional level, they may be used in place of an ISAM (Indexed Sequential Access Manager). By sorting on
a particular key and searching for values on that key, they are fast enough to enable applications to be
written without an ISAM.

A new file type has been defined, that of c_INDEXED, to host xtables on disk. The Indexed file is a direct
representation of an XTABLE in memory.

NOTE:- That XTABLES, being bent more toward file access, are only single dimension
NOTE:- tables. This does not mean, however, that they cannot be used for other purposes.

While Tables are defined at the time of assembly, Xtables are dynamic, that is,
memory is allocated at runtime

Bind
@xtables_bind LargeTable, LargeRecord, Size

must be used prior to any other xtable operation. It allocates memory for the table as defined by the
Size parameter and associates a record with the table.

NOTE: Remember that an XTABLE contains an extra 9 bytes at the front of each record to hold a
Delete Flag and an Index and must be taken into account when defining the xTable size.

Size = NoOfRecords*(RecordLength + 9)

Rget
@xtables_rget argeTable, Record_No

loads the record defined by the record no from the table

NOTE: If a sort has been performed on the table, obtaining a record based solely on its record
number will most times not get the record you are expecting. In order to identify your records location
in the table, a search must be performed to return the correct record no.

Rput
@xtables_rput LargeTable, Record_No)

places the record defined by the record no into the table.

NOTE: If the table is being loaded manually, it is your responsibility to ensure that the tables upper
boundary (tablename_UBOUND) is large enough to encompass the record no being added.

NOTE: If a sort has been performed on the table, the record no used to replace the table record must
be the no returned from a search operation.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 47

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Fget

RAW @xtables_fget WorkTable,FieldNo,FieldName,Index

COOKED A = FieldName[Index]

loads the field defined by the field No from the table, where

▪ LargeTable is the name of the table
▪ FieldNo is the field position in the record
▪ FieldName is the name of the recipient field. It does NOT have to be the

corresponding field in the record but must have identical properties.
▪ Index is the index that defines the records (containing the field) location in the

table

Fput

RAW @xtables_fput WorkTable,FieldNo,FieldName,Index

COOKED FieldName[Index] = A

stores the field defined by the field No from the table, where

▪ LargeTable is the name of the table
▪ FieldNo is the field position in the record
▪ FieldName is the name of the sending field. It does NOT have to be the

corresponding field in the record but must have identical properties. Literals are acceptable as
long as they also have identical properties.
Numeric literals. You may need to provide a picture over-ride to match the

receiving fields size. ie. {123,'999'}
Alpha fields. Field must be the same size as that defined by the record.

▪ Index is the index that defines the records (containing the field) location in the
table

Delete
@xtables_delete LargeTable, Record_No, Initialise

marks the record associated with the record number for deletion. Setting the Initialise field to TRUE
will fill the record with NULLS while FALSE will the leave the record intact.

It is dependent on the application to handle these deleted records. ie. set the IncludeDeletedRecords
to c_FALSE on any unload or handle what is written to file within your code.

NOTE:- If a deleted record is initialised you will not be able successfully search the xtable being that
it will contain search keys of 00h

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 48

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Load
@xtables_load LargeTable, LargeFile,I ncludeDeletedRecords

Although load may be used with random access files, it has been optimised to perform best with
indexed files. As indexed files are a direct representation of an xtable, languageONE can “swallow” the
entire file with a single read. This is opposed to the reading of each record when coupled with a
random file. Note though that when loading an Indexed file, the IncludeDeletedRecords indicator is
ignored.

Unload
@xtables_unload LargeTable, LargeFile, IncludeDeletedRecords)

Unlike the load function, unload must write each record individually in order to maintain any sort that
may have been preformed during processing of the table. IncludeDeletedRecords functions as would
be expected for unload.

Sort
@xtables_sort LargeTable, StartPosition, NoOfCharacters,Divisor

xtables uses an optimised Quick Sort.

Search
@xtables_search LargeTable, StartOfKey, EndOfKey, KEY, Idx)

returns the record associated with the provided key along with the Index used to locate the record. If
more than one record exists, the 1st record will be returned and the STATUS field will be set to
DUPLICATES

General
Like files, when accessing xtables languageONE provides a 'STATUS' field. It is defined as
TableName_STATUS. Thus the status field for the table A01_Table would be A01_Table_STATUS.
This field can be checked each time a file is accessed.

Present values are:-
22(DUPLCATES) = More than one table element exists for this key
23(INVALIDKEY) = Invalid Key

languageONE maintains a field named TableName_UBOUND which stores the location of the highest
slot within a table. It may be accessed directly.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 49

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

ARRAYS.LIB
Arrays, as described in previous parts of this manual, are a contiguous run of qwords (8 bytes). They do not
have the normal control block that other languageONE data items have and therefore data must be
transferred to and from the Array. Arrays are useful when speed is required and to this end an optimised
Quick Sort has been implimented.

Get

RAW @Arrays_Get ArrayName, Idx,Idx,Value

COOKED Value = ArrayName{Idx,Idx}

returns the array element - located by the Index’s - to Value

Put

RAW @Arrays_Put ArrayName,Idx,Idx,Value

COOKED ArrayName{Idx,Idx} = Value

stores the data – value - in the Array element located by Index’s

EQ

RAW @Arrays_Eq ArrayName1,Idx,Idx,ArrayName2,Idx,Idx

COOKED ArrayName1{Idx,Idx} = ArrayName1{Idx,Idx}

stores the data from array2 element in the array1 element

Swap – Note the double equals

RAW @Arrays_Eq ArrayName1,Idx,Idx,ArrayName2,Idx,Idx

COOKED ArrayName1{Idx,Idx} == ArrayName1{Idx,Idx}

swaps the data between array2 element and array1 element

Add

RAW @Arrays_Add ArrayName1,Idx1,Idx2,ArrayName2,Idx1,Idx2
@Arrays_Add ArrayName1,Idx1,Idx2,Dataname
@Arrays_Add ArrayName1,Idx1,Idx2,Numeric Literal

COOKED ArrayName1{Idx,Idx} =+ ArrayName2{Idx,Idx}
ArrayName1{Idx,Idx} =+ Dataname
ArrayName1{Idx,Idx} =+ Numeric Literal

add the value to array1 element

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 50

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Sub

RAW @Arrays_Sub ArrayName1,Idx1,Idx2,ArrayName2,Idx1,Idx2
@Arrays_Sub ArrayName1,Idx1,Idx2,Dataname
@Arrays_Sub ArrayName1,Idx1,Idx2,Numeric Literal

COOKED ArrayName1{Idx,Idx} =- ArrayName2{Idx,Idx}
ArrayName1{Idx,Idx} =- Dataname
ArrayName1{Idx,Idx} =- Numeric Literal

subtracts the value from array1 element

Mul

RAW @Arrays_Mul ArrayName1,Idx1,Idx2,ArrayName2,Idx1,Idx2
@Arrays_Mul ArrayName1,Idx1,Idx2,Dataname
@Arrays_Mul ArrayName1,Idx1,Idx2,Numeric Literal

COOKED ArrayName1{Idx,Idx} =* ArrayName2{Idx,Idx}
ArrayName1{Idx,Idx} =* Dataname
ArrayName1{Idx,Idx} =* Numeric Literal

Multiplies array1 element by the value

Div

RAW @Arrays_Div ArrayName1,Idx1,Idx2,ArrayName2,Idx1,Idx2
@Arrays_Div ArrayName1,Idx1,Idx2,Dataname
@Arrays_Div ArrayName1,Idx1,Idx2,Numeric Literal

COOKED ArrayName1{Idx,Idx} =/ ArrayName2{Idx,Idx}
ArrayName1{Idx,Idx} =/ Dataname
ArrayName1{Idx,Idx} =/ Numeric Literal

Divides array1 element by the value
If

RAW @Arrays_IF ArrayName1,Idx1,Idx2,=,ArrayName2,Idx1,Idx2
@Arrays_IF ArrayName1,Idx1,Idx2,=,Dataname
@Arrays_IF ArrayName1,Idx1,Idx2,=,Numeric Literal

COOKED IF ArrayName1{Idx,Idx} = ArrayName2{Idx,Idx}
IF ArrayName1{Idx,Idx} = Dataname
IF ArrayName1{Idx,Idx} = Numeric Literal

Compares array1 element to the value

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 51

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Sort
@Arrays_sort ArrayName

An optimised Quick Sort of the Array.
Only single dimension Arrays can be sorted correctly

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 52

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

WWW.LIB
languageONE manages a graphical user interface by, dare I say, “leverageing” web technology. In fact a
languageONE program supplying a graphical experience to a user is a simple HTML server. In this way it
may be accessed locally thru a browser (URL being localhost:portNo) or across either a local or remote
network (URL being IPAddress:portno).

Socket technology is also used for (I)nter (P)rocess (C)ommunication. This will be described in the
following section.

The program may be defined in 3 simple statements.

@www_open PortNo
@www_process screen, responsefield, GET_Subroutine, POST_Subroutine
@www_close PortNo

and that is it, in its entirety. In fact a complete web site may be managed by the above 3 statements. Of
course a great deal of the work is done by the front end that is described by the HTML and perhaps
Javascript that may or may not be coded.

V1.15.ONE and onwards will demonstrate the way that languageONE can implement a graphical user
interface, while V2.02 demonstrates a full blown application, V2.03 demonstrates that same application with
record locking and V2.05 demonstrates the same application but built with a seperate “file server” program.

The languageONE program takes a slightly different take on CGI.
Wiki describes CGI as:-

In computing, Common Gateway Interface (CGI) offers a standard protocol for web servers to interface
with executable programs running on a server that generate web pages dynamically. Such programs are
known as CGI scripts or simply as CGIs; though usually written in a scripting language, they can be written
in any programming language.

In regard to the above statement languageONE nominates the executable program as taking the lead and
supplies the HTML server as a secondary process. By supplying the POST and GET call back address's in
the @www_process call the languageONE program can manage the interface from the back end.

It is important to understand the languageONE demonstration programs, V1.15.ONE and V1.16.ONE in
addition to the HTML and Javascript associated with these programs, to fully appreciate the end to end
process that has been adopted by languageONE. It is also taken for granted that everyone nowadays
understands web technologies.

NOTE:- WWW.LIB provides a “passthru” where a ResponseField populated by your application will be
returned directly to a browser. This mechanism is controlled by the RETURN_CODE field. Initialising it
with the length of the ResponseField tells WWW.LIB to do the passthru as opposed to the more likely
returning of a html document.

V2.02.ONE, V2.03.ONE and V2.05.ONE demonstrate this process.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 53

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Open
@www_open portno

This is the 1st call required in a languageONE GUI program. This call establishes a connection
between a languageONE program and the outside world (be it a local connection via a
“localhost:portno” URL or a “IPaddress:portno” URL across a network (local or otherwise). It is the
first call that a languageONE GUI program makes in order to interface with a user in a graphical
environment.

Process
@www_process Screen,ResponseField, GET_SubRoutineName, POST_SubRoutineName

This is the 2nd call required in a languageONE GUI program. It defines the screen name that begins a
conversation, a response field that will be passed back to a calling program, the name of a sub routine
that will be called by WWW when a GET is received from the front end and the name of a sub
routine that will be called by WWW when a POST is received from the front end.

It is the languageONE application program that interprets the response field and manages the process.

NOTE:- At the minimum, the GET Routine should initialise RETURN_CODE & ERROR_CODE

BEGIN.SUB GET_SubRoutineName
RETURN_CODE = 0 ; > zero tells the server this program provides the response
ERROR_CODE = 0 ; Only set ERROR_CODE if you want the server to terminate

END.SUB GET_SubRoutineName

Close
@www_close (portno)

This is the 3rd and final call required in a languageONE GUI program. This call closes the previously
established connection and terminates the process.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 54

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

(I)nter (P)rocess (C)ommunication
Inter-process communication(IPC) refers specifically to the mechanisms an operating system provides to
allow the processes to manage shared data. Typically, applications can use IPC, categorized as clients
and servers, where the client requests data and the server responds to client requests. Many applications
are both clients and servers, as commonly seen in distributed computing.

This is managed in languageONE by the WWW.LIB module. Messages can be sent between processes
running on a single machine or multiple machines running on a network (including the internet).

Client
@www_sendmsg

@www_SendMsg w_IP_Address, w_PortNo, w_Msg
@www_SendMsg "127.0.0.1", "1024", ”Hello World”

This command sends a message to the machine described by the socket <IP/Port>.

If your application requires a response it is the applications responsibility to enable that. One way of
doing this may be to define a response socket to the server within you message. Ie www.SendMsg
w_IP_Address, w_PortNo, ”192.168.0.4 1025 Hello World”

Server
@www_recvmsg

@www_RecvMsg w_IP_Address, w_PortNo, w_Msg
@www_RecvMsg "127.0.0.1", "1024", w_Msg

The receive message call sets the server into a waiting state where it will listen for any incoming
messages. Once it has received one it will return the message to the application program. Note that
the server listens for ALL messages on the described port, NOT just one from your application.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 55

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Client-server_model
https://en.wikipedia.org/wiki/Client-server_model
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Operating_system

APPENDIX A.
How to implement a list in languageONE.

Lists are not particularly part of the language but can be implemented as follows.
In the DICTIONARY, insert a word:

@insertword wordlist,17*9,
{

'FIRST LIST ITEM ', \
'SECOND LIST ITEM ', \
'THIRD LIST ITEM ', \
'FORTH LIST ITEM ‘, \
'FIFTH LIST ITEM ', \
'SIXTH LIST ITEM ', \
'SEVENTH LIST ITEM’, \
'EIGHTH LIST ITEM ‘, \
'NINTH LIST ITEM ‘, \

}

 The length [17*9] defines the entire word (ie:- Length of each item times the number of items.
 The list must be enclosed in braces “{}” (Linux) or “<>” (Windows) with each item separated

by a comma.
 Each item in the list must be of equal size. (you must define trailing spaces.)
 The list may split across lines by using the “\” (continuation character)

wordlist may then be addressed in the program body in the following manner:-

@repeat_for (I,1,17*8,17)
@words_pad {wordlist,I,17},wordlistItem
...
...

end.repeat

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 56

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

APPENDIX B.
KEYWORDS (macros)

Integers
@INTEGERS_EQ @INTEGERS_ADD @INTEGERS_SUB

@INTEGERS_MUL @INTEGERS_DIV @INTEGERS_CALC

@INTEGERS_AND @INTEGERS_OR @INTEGERS_XOR

Sub Routines
@BEGIN_SUB @END_SUB @EXIT_SUB

@USING

Functions
@BEGIN_FUNCTION @END_FUNCTION @EXIT_FUNCTION

@USING

Screen IO
@CURSOR @ACCEPTLINE @ACCEPTLINE_AT

@ACCEPT_AT @DISPLAY @DISPLAYLINE

@DISPLAY_AT

Strings
@INSERTWORD @WORDS_COPY @WORDS_PAD

@WORDS_UPPERCASE @WORDS_LOWERCASE @WORDS_INSERT

@WORDS_FIND @WORDS_REPLACE @WORDS_ENVIRONMENT

@WORDS_LENGTH @WORDS_STRINGTORECORD @WORDS_RECORDTOSTRING

Numbers
@INSERTNUMBER @NUMBERS_EQ @NUMBERS_ADD

@NUMBERS_SUB @NUMBERS_MUL @NUMBERS_DIV

@NUMBERS_CALC

Decisions

@IF @_IF @_OR

@_AND @_END

@ELSE @END_IF @BEGIN_TEST

@WHEN @_WHEN @WEND

@END_TEST

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 57

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

Loops
@REPEAT_IF @REPEAT_WHILE @REPEAT_FOR

@EXIT_REPEAT @END_REPEAT

Files
@FILES

@INSERTFILE @BEGIN_RECORD @END_RECORD

@FILES_OPEN @FILES_READ @FILES_WRITE

@FILES_START @FILES_NEXT @FILES_DELETE

@FILES_CLOSE @FILES_CHDIR @FILES_GETCWD

@FILES_COPY @FILES_RENAME @FILES_REMOVE

Tables
@INSERTTABLE @TABLES_BIND @TABLES_RPUT

@TABLES_RGET @TABLES_FPUT @TABLES_FGET

@TABLES_SORT @TABLES_SEARCH

Xtables
@INSERTXTABLE @XTABLES_BIND @XTABLES_RPUT

@XTABLES_RGET @XTABLES_FPUT @XTABLES_FGET

@XTABLES_SORT @TABLES_SEARCH @XTABLES_SEARCH

@XTABLES_LOAD @XTABLES_UNLOAD

Arrays
@INSERTARRAY @ARRAYS_GET @ARRAYS_PUT

@ARRAYS_ADD @ARRAYS_SUB @ARRAYS_MUL

@ARRAYS_DIV @ARRAYS_SWAP @ARRAYS_EQ

@ARRAYS_SORT @ARRAYS_IF

Date
@DATE_SECONDS @DATE_TIMER

@DATE_GET @DATE_DATEFROMDAYS @DATE_DAYSFROMDATE

WWW
@WWW_OPEN @WWW_PROCESS @WWW_CLOSE

@WWW_SENDMSG @WWW_RECVMSG

Miscellaneous

@INTEGERS_TOGGLE @RUN @WAIT (CHILD_PID)

@TERMINATE (ERROR_CODE)

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 58

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

APPENDIX C.
Because languageONE is a set of runtime libraries and access to those libraries is via a set of text based
macro, it is possible to alter the syntax of languageONE to suit your own taste. It can be done in 2 ways.

Macros
include/LMACROS.CPY contains all the keyword macros that comprise languageONE. You may edit
these Macros and rename any of them

Synonyms
A less permanent way of altering the syntax of languageONE is via the Synonyms that are available to the
reWRITER. These Synonyms tell the reWRITER to replace any token with a substitute. Synonyms are
coded as comments, prior to their use in an application program. They should begin with the
BEGIN.SYNONYMS directive and end with the END.SYNONYMS directive.

; BEGIN.SYNONYMS **************************************
; InsertWord : @INSERTWORD
; InsertNumber : @INSERTNUMBER
; END.SYNONYMS **

The above example directs the reWRITER to replace every occurrence of INSERTWORD with
@INSERTWORD and every occurrence of INSERTNUMBER with @INSERTNUMBER

You may use “include” files in the Synonym section of your program by coding the path/file name of the
file containing the synonyms.

; BEGIN.SYNONYMS **************************************
; include/LPACK1.SYN
; END.SYNONYMS **

NOTE:- languageONE comes with what is termed a “language Pack” (LPACK1.SYN) being a collection
of synonyms that have been defined to modify languageONE to my particular taste.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 59

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

APPENDIX D.
System Supplied Fields

LIBRARY NAME STRUCTURE VALUE ACCESS

STDIO LF languageONE 0x0A/0x0D0A Read

v_Cursor languageONE 0,0 Write

COMMON c_FALSE Constant 0

c_TRUE Constant 1

ERROR_CODE languageONE 0 Read/Write

RETURN_CODE languageONE 0 Read/Write

CHILD_PID languageONE 0 Read Only

exitRepeat languageONE c_TRUE/C_FALSE Read/Write

FILES c_NULL Constant 1

c_LF Constant 2

c_CSV Constant 4

c_RECORD Constant 8

c_RANDOM Constant 16

c_INDEXED Constant 32

c_DIRECTORY Constant 64

<filename>_READLENGTH languageONE 0 Read Only

<filename>_STATUS languageONE 0 Read Only

<filename>_SIZE languageONE 0 Read Only

<filename>_HANDLE languageONE 0 Read/Write

EOF languageONE 10

INVALIDKEY languageONE 23

<recordname>_NO languageONE 0

TABLES <tablename>_STATUS languageONE 0 Read Only

XTABLES <tablename>_STATUS languageONE 0 Read Only

<tablename>_UBOUND languageONE 0

WORDS w_CommandLine 256 bytes Program parameters Read Only

w_Spaces 128 bytes {w_spaces,1,128}

ARRAYS d(functionname) As per picture 0 Read/Write

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 60

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

APPENDIX E.
Basic Debugging in languageONE

Under a Linux operating system, if the debug switch is set when reWritting the program languageONE
will display an Entering/Exiting message on the console when calling Subroutines and Functions.

Windows Debuggers
languageONE V3.00 was developed because of the need for a useful debugger on the Windows platform.
With VisualStudio being the preferred Microsoft option this release brings with it the successful use of
that platform. A languageONE programmer needs to instal MASM on their development system and it
can be made available to VisualStudio by right clicking on your project, selecting "Build Dependencies"
followed by "Build Customizations" and checking MASM as the target.

Linux Debuggers
Linux systems come with GDB, the GNU Debugger. It is a command line debugger and the back end to
several GUI front ends such as DDD, XXGDB and INSIGHT. I personally have become familiar with
DDD and it is what I would recommend.

Linux Debugging
One difficulty in debugging a languageONE program under the Linux operating system is the a debuggers
ability to align the source with the running code.

The solution to the problem is to produce a source file such that the debugger is able to follow the code
line by line. The languageONE "reWRITER" has been modified for the purpose and includes a -d option.
'makeONE -d V3.00' will produce a file that is formatted as follows.

The keyword 'DEBUG' will be inserted prior to every languageONE keyword. Ie

display('Hello World')
DEBUG

display('What is your name')
DEBUG

acceptline w_UserName

DEBUG itself is a single line macro that contains the code
mov qword[STOP],1

in this way, a watch point may be established in the debugger and set to halt the program whenever
STOP = 1. When entering a debug session, issue the following command:-

watch STOP if STOP==1

All going well, the debugger will then stop at each occurrence of the DEBUG macro, or more to the
point, before each line of code to be debugged.

AMENDMENT:- As of Version 3.05 the DEBUG macro will not be written by the reWriter, rather it has
been built into each macro. This is a trial as the source may not align as well as required but it will be
monitored until it proves itself. Note also that NASM Version 2.14.02 has been used for testing and
higher versions of NASM< will definitely fail to align to the source code properly.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 61

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

APPENDIX F.
Macros

Becasue languageONE is actual assembler code, the ability to code macros is a manifestation of the
assembler you are using - (Windows) MASM and the (Linux) NASM. Macros written for either of these
platforms will function happily within a languageONE program however macros written in raw code may
sit anywhere in the program while cooked code must follow the @BEGIN_INSTRUCTIONS macro.

APPENDIX G.
Assembler Directives

Assembler directives are available to a languageONE program and mainly take the form of constants.

Linux Windows

%define c_YES 1 c_YES EQU 1

%define c_NO 0 c_NO EQU 0

LanguageONE Directives
This directive gives languageONE a default picture size when creating work fields. It may be used more
the once and maintains its value until the next directive is coded.

%define FP_DefaultPicture '9999.999999'

An example of a default picture size is the use of fixed point precedence such that:-

A = [[B * 1.23] / 2.34] directs languageONE to

create work fields as it works thru the precedence levels. Note that a divide can create any number of
decimal place (ie 22 / 7) so it may help to set the no of decimal places with this directive.

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 62

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

APPENDIX G.
languageONE Structures

@INSERTWORD
SIZE VALUE DEFINITION

DQ 0 Not Used

DQ 0 Not Used

DB X Define it as a string

DQ 0 Defines the length

DB text String Value

@INSERTNUMBER
SIZE VALUE DEFINITION

DB 0 No Of Digits

DB 0 No Of Places

DW 0 Reserved

DD 0 Reserved

DQ 1 Scaling for Fixed Point

DB 9 Defines it as a number

DQ 0 Defines the length

DQ 0 Value

DB “9.9” Editing Picture

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 63

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/

APPENDIX H.
(F)ast (L)ight (T)ool (K)it

languageONE V3.04 develops the interface required to link to (Fast) (L)ight (T)ool (Kit). Here's what
FLTK has to say on their website (www.fltk.org)

FLTK (pronounced "fulltick") is a cross-platform C++ GUI toolkit for Linux® and Microsoft® Windows.
It provides modern GUI functionality without the bloat and supports 3D graphics via OpenGL and its built-
in GLUT emulation. FLTK is designed to be small and modular enough to be statically linked, but works
fine as a shared library. FLTK also includes an excellent UI builder called FLUID that can be used to
create applications in minutes. FLTK is provided under the terms of the GNU Library Public License,
Version 2 with exceptions that allow for static linking.

A search of the web, when looking for GUI tollkits, can return articles that list things like "36 best GUI
toolkits". I have investigated them all (believe me) and FLTK is by far the most suitable for languageONE.
Although it is written in C++ it can be treated as a "screen painter" without having a full understanding of the
base language. fV3.04 is a demonstration program that, if used as a template, should smooth the way into
creating GUI's for languageONE. Each click can invoke a "callback" and it is this mechanism that
languageONE uses to interface to the running C++ program. Although languageONE takes a subordinate role
(ie the langaugeONE program and languageONE.lib are statically linked to the FLTK program) it can provide
all the functionality of a back end server in a similar way that languageONE interfaces and uses html as a web
based front end.

Note;- There is no additional functionality build into languageONE to support FLTK, you simply tell your
program it is to be linked to a fltk program (Linux->(%define fltk 1) – Windows→(fltk TEXTEQU)

w ww. languageONE.com.au
roger@languageONE.com.au

26/04/23 - Version V3.00
Page 64

http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.languageONE.com.au/
http://www.fltk.org/

	WHERE IS EVERYTHING
	​ languageONE

	​ THE LANGUAGEONE "reWRITER"
	​ Overview
	​ "reWRITER" functions:-
	​ Continuation Character
	​ Line Splitting
	​ Bracketing
	​ Commas
	​ Synonyms
	​ Beginning/End Constructs
	​ Decimal Places
	​ Inference
	​ Precedence

	​ DATA DEFINITION
	​ DICTIONARY
	​ Integers
	​ Fixed point numbers
	​ Literals
	​ Setting precedence

	​ FILES
	​ example:-
	​ File Status
	​ File Size

	​ RECORDS
	​ Record Description
	​ Record No

	​ TABLES
	​ Insert Table
	​ Bind Table
	​ @Tables_bind WorkTable,A01_Record,NoOfRecords

	​ XTABLES
	​ InsertXTable
	​ Bind Xtable

	​ ARRAYS (Integer)
	​ InsertArray

	​ SIMPLE INTEGER ARITHMETIC
	​ Equals
	​ Addition
	​ Subtraction
	​ Multiplication
	​ Division
	​ Calculation
	​ Setting precedents

	​ LOGICAL EXPRESSIONS
	​ Logical And
	​ Logical Or
	​ Logical Xor

	​ CONSTANTS
	​ examples:-
	​ examples:-
	​ Inline Assembler

	​ LANGUAGEONE RUNTIME SYSTEM
	​ Introduction

	​ COMMON.LIB
	​ Date from Days
	​ Days from Date
	​ Seconds
	​ @date_seconds seconds
	​ Timer
	​ Run (Batched)
	​ Run (Interactive)
	​ Wait

	​ STDIO.LIB
	​ Cursor
	​ Display
	​ Display Line
	​ Display at
	​ Acceptline
	​ Acceptline.at
	​ Accept at
	​ Screen Attributes
	​ Returned by @Accept_At

	​ WORDS.LIB
	​ Copy
	​ Pad
	​ Uppercase
	​ Lowercase
	​ Insert
	​ Find
	​ Replace
	​ Environment
	​ Length
	​ String to record
	​ Record to string

	​ NUMBERS.LIB
	​ Equals
	​ Addition
	​ Subtraction
	​ Multiplication
	​ Division
	​ Overloading
	​ Calculation
	​ Random

	​ DECISIONS.LIB
	​ IF statements
	​ IF statements...cont
	​ @_IF, @_OR, @_AND, @_END
	​ the _IN operator
	​ the _NIN operator
	​ TEST statements
	​ TEST statements...cont
	​ @_WHEN, @_OR, @_AND, @_END

	​ LOOPS
	​ @repeat_if
	​ @repeat_while

	​ LOOPS….cont
	​ @repeat_for

	​ SUB ROUTINES
	​ Overview
	​ Passing parameters

	​ FUNCTIONS
	​ Boolean Functions
	​ Numeric Functions

	​ FILES.LIB
	​ Open
	​ Read
	​ Write
	​ Delete
	​ Close
	​ Copy
	​ Rename
	​ Eemove
	​ Chdir
	​ Getcwd
	​ RANDOM ACCESS FILES
	​ Start
	​ Next

	​ DIRECTORIES
	​ Open
	​ Read
	​ Close

	​ RECORD LOCKING
	​ Lock
	​ Unlock

	​ TABLES.LIB
	​ Bind
	​ Rget
	​ Rput
	​ Fget
	​ Fput
	​ Sort
	​ Search

	​ XTABLES.LIB
	​ Bind
	​ Rget
	​ Rput
	​ Fget
	​ Fput
	​ Delete
	​ Load
	​ Unload
	​ Sort
	​ Search
	​ General

	​ ARRAYS.LIB
	​ Get
	​ Put
	​ EQ
	​ Swap – Note the double equals
	​ Add
	​ Sub
	​ Mul
	​ Div
	​ If
	​ Sort

	​ WWW.LIB
	​ Open
	​ Process
	​ Close

	​ (I)nter (P)rocess (C)ommunication
	​ Client
	​ @www_sendmsg
	​ Server
	​ @www_recvmsg

	​ APPENDIX A.
	​ How to implement a list in languageONE.

	​ APPENDIX B.
	​ KEYWORDS (macros)
	​ Integers
	​ Sub Routines
	​ Functions
	​ Screen IO
	​ Strings
	​ Numbers
	​ Decisions
	​ Loops
	​ Files
	​ Tables
	​ Xtables
	​ Arrays
	​ Date
	​ WWW
	​ Miscellaneous

	​ APPENDIX C.
	​ Synonyms

	​ APPENDIX D.
	​ System Supplied Fields

	​ APPENDIX E.
	​ Basic Debugging in languageONE
	​ Linux Debuggers

	​ APPENDIX F.
	​ Macros

	​ APPENDIX G.
	​ Assembler Directives
	​ LanguageONE Directives

	​ APPENDIX G.
	​ languageONE Structures

	​ APPENDIX H.
	​ (F)ast (L)ight (T)ool (K)it

