languageONE
Version 3

OVERVIEW

languageONE is the both the newest and the oldest of programming languages. By the strictest
of definitions it is assembler code, but you would never know that by looking at it. More broadly,
it is a set of macros that provide for all the functionality required when programming. And it is
more. It provides a framework to support the macros in an assembled program and systematically
defines the structures required to manage data and program flow. languageONE provides for
64bit coding and can be used "as is" or can be used to facilitate an in depth knowledge of the
system, so that the full power of the language can be realised. Unlike some other systems which
allow in line assembler languageONE is assembiler, so if you want to write some assembler code,
just do it.

languageONE is extensible (able to be extended). Because the language is based on macros
you can code a solution, give it a macro name and it then becomes part of the language.
Additionally, the existing syntax can be changed to suit your programming style. ie. The delivered
syntax allows “_GT” or “>" in decision making. However, as this is just a predefined token and
accessable via an %include file, your are free to modify this to whatever you prefer. More easily,
languageONE impliments the idea of Synonyms.

So..What is a macro

a macro is a single instruction that expands automatically into a set of instructions to perform a
particular task. And what makes macros so powerful is that the preprocessor of a macro
assembler allows you to code parameters that may differ each time the macro is expanded.
Consider the following assembler macro:-

%macro $initialise 1-2 '
mov al, %2
mov rdi, %1
mov rcx,QWORD[%1-8]
cld
rep stosb

%endmacro

this probably doesn't look too familiar but when coded in languageONE it would look like:-
Initialise w_FirstName
This is how you might initialise a data item. (example only)

LINUX/WINDOWS
Version 3.00 seperated the Linux and the Windows versions. The Linux version continues to
target the NASM assembler, while the Windows version targets MASM.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
1 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

THE SYSTEM

languageONE is implemented with a number of (o)bject modules that provide functionality to the
system. These modules are stored in the languageONE.lib file and must be statically linked with

your assembled code. You may think of them as the runtime system for languageONE

WHERE IS EVERYTHING

languageONE

pre commandline pre assemble script [NASM Only]

assemble commandline assemble script

link commandline link script

makeONE commandline make utility

bin languageONE executables
languageONE [Linux] reWRITER
languageONE.exe [Windows] reWRITER

doc Documentation
languageONE.pdf This manual
languageONE.docx This manual
LICENSE gnu general public license
packages.pdf Documentation for the packages system
packages.docx Documentation for the packages system
VERSION.HISTORY Text file of all version history

html *.html/.jpg Html screens/images

include i LanguageONE components

lib languageONE.lib LanguageONE runtime

src *.lib LanguageONE source
languageONE.ASM

examples *.ONE Example programs

@fltk i Fltk (gui) programs

|@lazarus-fpp |-+ Lazarus (gui) programs

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
2 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

THE LANGUAGEONE reWRITER
OVERVIEW

HINT:- It may be more useful to skip this section and come back to it.

the languageONE reWRITER is a pre-processor that manipulates text. It is NOT a compiler
nor is it an assembler. (A language rewriter is usually a program that translates the form of
expression without a change of language). It is in fact written in languageONE and can be
modified and assembled as any other languageONE program can be.

NASM and other assemblers implement a pre-processor that presents certain facilities to
make coding easier. As such a program as input to NASM may contain pre-processor
statements to direct the pre-processor. ie. Yomacro and %endmacro are both pre-processor
directives. NASM's pre-processor implements some unequalled features but is fixed in the
way it works. As an example, NASM uses no brackets other than single line macros. Brackets
are almost mandatory in many programming languages and such the languageONE
reWRITER will manipulate their use.

The command line for rewritting, assembling and linking is as follows:-
makeONE <program name> (no extension — but must be “.ONE”")

The command line for reWriting only is as follows:-
bin/languageONE <program name> (no extension — but must be “.ONE")

Note the terminology used in this manual. Non reWritten code is referred to as ‘raw' or ‘pure’
language ONE, while reWritten code is referred to as “cooked” languageONE. When
describing macros both “raw” and “cooked” syntax will be listed.

Continuation Character:-NASM/MASM themselves recognise the \ (backslash) as a
continuation character and as such is also recognised by languageONE (by simply letting
it pass through)

Line Splitting:- NASM/MASM expects one instruction per line. The languageONE rewriter will
acknowledge the “|” character as a line splitting character and split the lines into their
components.

Bracketing:-All brackets found, other than those on single line macros, will be removed. This
gives you a great deal of freedom in the way you wish to code ie.

Commas:-Commas will be inserted where NASM expects to see them.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
3 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au
https://en.wikipedia.org/wiki/Rewriting

languageONE
Version 3

SYNONYMS
languageONE incorporates the idea of “synonyms”.

Essentially a synonym may be used at a program level to rename any token. This allows you to
use the synonym within your program and the reWRITER will replace it with it's original value.
The synonym directives, BEGIN.SYNONYMS and END.SYNONYMS, and the code they enclose,
must be coded as comments (starting the line with a semi-colon). The synonym (coded 1s;) and
the replaced value must be separated by a colon. The structure is as follows:-

:BEGIN.SYNONYMS

: Words. : @WORDS _

;. Integers. : @INTEGERS_
; Numbers. : @NUMBERS _
:END.SYNONYMS

Synonyms may be placed in a seperate file and “included” in your code by supplying the
path\filename:-

:BEGIN.SYNONYMS
;include\LPACK1.SYM
:END.SYNONYMS

Note:-The file “include\LPACK1.SYM is provided with the languageONE system and is denoted
as a language pack. It redefines all the system KEYWORDS to those favoured by the author of
languageONE and is coded in all example programs

BEGINNING/END CONSTRUCTS

BEGIN — END constructs will be counted and reported at the end of the reWriting

[000012] Begin Subs [000012] End Subs
[000012] Begin Repeats [000012] End Repeats
[000002] IF's [000002] End Ifs

[000000] Dot Commands [000000] Dot Ends
[000000] Begin Test's [000000] End Tests
[000000] When's [000000] Wend's

[000008] Open Braces [000008] Close Braces
[000000] Open SgBrackets [000000] Close SgBrackets

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
4 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

DECIMAL PLACES

Where NASM/MASM sees a decimal point it assigns a value based on its assumption that the
program will use the Floating Point Unit. languageONE does not in fact use the FPU but rather
performs fixed point arithmetic. To that end numbers with decimal places will be manipulated by
the rewriter to allow for correct processing. le:-

@insertnumber Testl,-1.23456,'#,###,##9.99999-'
will be transformed into
@insertnumber Testl,-123456,'# ###,##9.99999-'

@insertnumber Test2,1.234,'##9.99999-'
will be transformed into
@insertnumber Test2,123400,'#4#9.99999-'

@insertnumber Test4,12345,'##9.99999-'
will be transformed into
@insertnumber Test4,1234500000, ##9.99999-'

In addition, where a fixed point number is used as a literal following the begin.instructions directive
a picture must be supplied. The rewriter will now provide that picture such that you may code only
the fixed point number. So, whereas a “raw” languageONE program requires for example

@numbers_add n_Destination,{12345,'99.999'}
you may code
@numbers_add n_Destination,12.345

INFERENCE

The rewriter will 'infer' calculations in the following way:-

w_SomeWord = 'Hello World'
and the reWriter will infer:-
@words_copy 'Hello World',w_SomeWord

A=B+2*80
and the reWriter will infer:-
@integers_calc A,=,B,+,2,*,80

A=B+2.34*67.345
and the reWriter will infer:-
@numbers_calc A,=,B,+,{234,"9.99"},* {67.345,799.999"}

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
5 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

PRECEDENCE

languageONE uses square brackets to denote precedence. You can think of square brackets
simply as telling the reWriter to “Do this first”

A =[[[B + 2.34 + 3.45] / 3] + 123.88] * [5 + [C * 2.45]]

TABLE/ARRAY ELEMENTS

languageONE extends the use of square brackets and in combination with inference can now
recognise Table Elements coded in the more traditional format.

n_Integer[ldx]

Note:- The languageONE reWriter cannot infer indexed table elements {ie. Item[1] = 1} coded
prior to the BIND command.

With the introduction of Arrays, languageONE also extends the use of braces and in combination
with inference can now recognise Array Elements coded in the more traditional format.

n_Integer{ldx}

WINDOWS

As the raw languageONE code for Windows varies in some ways from the raw languageONE
code for Linux, the reWriter in Version 3.00 has been enhanced in terms of its output. MASM is
now the target for Windows, while NASM is retained as the target for Linux. If coding “cooked”
code you should include the word “WINDOWS” anywhere in the 1s: line of your program and
MASM syntax code will be be produced.

The Synonym language pack provided with release 3.00 aids in maintaining the same syntax for
both operating systems when utilising the “cooked” version of each program.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
6 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

DATA DEFINITIONS

Data in languageONE is defined in one of two areas. For text strings it is within the Dictionary and
for numbers it is within the Matrix.

DICTIONARY

The 'dictionary’ is the area of the program where alphanumeric words may be described. The
'BEGIN.DICTIONARY" directive is used to inform the system that the dictionary will begin here.
The 'END.DICTIONARY" directive is used to inform the system that the Dictionary is complete.

LINUX %include “BEGIN.DICTIONARY”
WINDOWS include <BEGIN.DICTIONARY>

languageONE uses the keyword @INSERTWORD to define strings within the dictionary.

LINUX @INSERTWORD
WINDOWS @INSERTWORD
example:-

@INSERTWORD w_MyFieldName, 32, 'My Fields Literal'

w_MyFieldName is the field name used within the languageONE program
32 is the length of the string
'My Fields Literal'is the initial value given to w_MyFieldName

Note:-that when the given literal is shorter than the defined string length the field will be
padded with spaces thus to initialise a blank field you would code:-

@INSERTWORD w_Blanks,64,™ [NASM]
@INSERTWORD w_Blanks,64,” “* [MASM] (a space must be coded)

ALIAS:-

@INSERTWORD {w_Alias,w_MyFieldName}, 32, 'My Fields Literal’
An alias may be defined when using the @INSERTWORD macro. Both names may be
used throught your program.

QUALIFYING A STRING

Wherever a string is used within a program it may be qualified by coding a starting position
and the number of characters to reference. It takes the form:-

LINUX {w_MyFieldName,8,16}
WINDOWS <<w_MyFieldName,8,16>>

This reads as — starting at character eight take the next 16 characters.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
7 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

MATRIX

The 'matrix' is the area of the program where numbers may be described. The
'BEGIN.MATRIX' directive is used to inform the system that the Matrix will begin here. The
‘END.MATRIX' directive is used to inform the system that the Matrix is complete.

LINUX %include “BEGIN.MATRIX”
WINDOWS include <BEGIN.MATRIX>

languageONE uses the keyword @INSERTNUMBER to define Numbers within the matrix

LINUX @INSERTNUMBER
WINDOWS @INSERTNUMBER
example:-

@Insertnumber w_MyNumber,100

w_MyNumber is the field name used within the languageONE program
100 initialises the number field to 100

@Insertnumber w_MyNumber,100,'#,##9-'

w_MyNumber is the field name used within the languageONE program
100 initialises the number field to 100
‘# ##9-' The numbers ‘PICTURE’

The numbers 'picture’ describes how the system handles/outputs the number. It comprises a
series of characters that define the formatting of the number in a similar way to the BASIC
programming language. The following symbols are represented:-

"' (the minus sign) [Last character]
This defines the number as being signed. The number can represent both positive
and negative numbers. It should be the last character of the picture.

'9' This defines a place value for the number.
If there is a zero in this position it will be displayed

'#' This also defines a place value for the number
However, a leading zero in this position will be displayed as a space

"' This defines a thousands indicator and will be displayed when appropriate.

"' This defines the number as a Fixed Point number.

Note:- If a number has no picture, a default 26 character picture will be used. If a number without
picture is accepted as input, languageONE will assign a picture developed from that input. ie.
accept=1,234.56- Assigned Picture= 9,999.99-

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
8 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

ALIAS:-
@Insertnumber {w_Alias,w_MyNumber},100,# ##9-'

An alias may be defined when using the @INSERTNUMBER macro. Both names may be used
throught your program.

INTEGERS

Unsigned: All numbers will be considered as signed

Signed: From -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 can be
represented as integers.

FIXED POINT NUMBERS

Fixed Point numbers are used in languageONE. This is different from many programming
languages that use floating point numbers. Floating point numbers require a FPU and are not
entirely accurate. (Ever had that experience with a calculator where you enter something like
2 * 2 and get an answer of 3.9999999999

Fixed point numbers in languageONE are integers with an ‘implied' decimal place. This is
implemented via the picture clause of the insertnumber keyword. By defining a picture like
'999.99', you are asking for a number that contains 2 decimal places. A picture of say
W HHH H#H#9.9999-' defines a number with 4 decimal places with a sign displayed (remembering
all numbers are treated as signed).

Because all numbers are actually 64 bit integers the following restrictions apply to Fixed
Point numbers. Using languageONE's largest integer (9,223,372,036,854,775,807) the
following range is encapsulated

.9223372036854775807
This number can define the size of something smaller than an electron

922337203685477580.7
This number can count, in seconds, from the big bang until now and be only half filled. It

follows that the largest number that contains the largest no of decimal places is
9999999999.999999999 or 999999999.9999999999

DEFINING FIXED POINT NUMBERS

Because fixed point numbers are held as an integer with a implied decimal place you must
acknowledge the number of decimal places in a given value. That is, given a picture of '999.99'
and a required value of 123 you must code 12300,'999.99'. Coding 123,'999.99' implies the
number is 1.23

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
9 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

LITERALS

If a fixed point number is required for a literal then a picture MUST be coded following that
literal. ie: {123,'9.99'} equates to 1.23

Note:- this may be handled by the rewriter. A pure Fixed Point number may be defined ie A =
1.23 — be aware though that the reWritten version of your program will of had the number
converted to its implied Fixed Point value

SETTING PRECEDENCE
square brackets denote precedents for number and these are handled by the reWriter. ie

A=[[[B +2.34 +3.45]/ 3] + 123.88] * [5 + [C * 2.45]]

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
10 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

FILES

The 'FILES' section is the area of the program where Files may be described. The
'BEGIN.FILES' directive is used to inform the system that file descriptions will begin here. The
‘END.FILES' directive is used to inform the system that the file section is complete.

LINUX %include “BEGIN.FILES”
WINDOWS Include <BEGIN.FILES>

Each entry begins with the 'keyword' @INSERTFILE, followed by a file type indicator, a name you
choose to refer to the file within the program, and the external name of the file.

LINUX @INSERTFILE
WINDOWS @INSERTFILE

example:-Insertfile Delimiter, I-Name, './X-Name'

where Delimiter may be
C_NULL,
c_LF,
c_Csv,
T
c_RECORD,
c_RANDOM,
c_INDEXED,
c_DIRECTORY,
"Your Own Delimiter’

where I-Name is the name used within the program to reference the file
where './X-Name' is the external name of the file

DELIMITERS

c_NULL
Indicates that a NULL value (0x00) is used to delimit logical records. languageONE will add
this character when writing to the file and strip this character when reading from the file.

Cc_LF
Indicates that a LINEFEED value (0x0A) or (0x0A,0x0D) is used to delimit logical records.
languageONE will add this character when writing to the file and strip this character when
reading from the file.

c_CSv
Indicates a standard comma delimited file will be used. Alphanumerics will be enclosed in
quotation marks, fields will be separated by commas and a LINEFEED character will delimit
the logical record

2" Your own character
Any single character enclosed in quotes

¢_RECORD
Indicates that a RECORD will be used to read from and write to the file (refer next section)

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
11 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

DELIMITERS...cont

¢c_RANDOM
Indicates that the file can be accessed by record no. RECORDS are implicit in random files.

c_INDEXED
Indicates that the file is optimised for use with the Xtables module. Its format echo's the
Xtable format in memory, ie there is an 8 byte index field and a 1 byte status field that
precedes each record. It is accessed by record no. RECORDS are implicit in indexed files.

¢ _DIRECTORY
Indicates that it is a directory that is being read.

The external name may be replaced by a dictionary word and can be allocated dynamically by
simply setting it equal to name. ie.

[in the file section] @Insertfile ¢_LF,IN_File

[in the code section] IN_File = “External File Name”

FILE STATUS

When accessing files languageONE provides a 'STATUS' field. It is defined as
FileName_STATUS. Thus the status field for the file AO1_File would be A0l _File_ STATUS.
This field can be checked each time a file is accessed.

Present values are:-

Constant Value Meaning
EOF 10 End Of File
INVALIDKEY 23 Invalid Key
DUPLICATE 22 More than 1 record exists for this key
LOCKED 90 Record or File is locked
FILE SIZE

Additionally, when a file has been opened, languageONE provides a 'SIZE' field. It is defined
as FileName_SIZE. Thus the size field for the file AO1_File would be A01_File_SIZE.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
12 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

RECORDS

A record is a collection of elements, typically in fixed number and sequence and typically
indexed by serial numbers or identity numbers. The elements of records may also be called

fields or members.

Records provide for structuring data in a logical way. They are usually, but not always, used
to describe datain a file and thus provide clearer code when defined with the file in question.
Each entry in a file is described as a record. Records are also mandatory in languageONE

tables. (refer next section)

Each record entry starts with @BEGIN_RECORD keyword. It is followed by a numeric value
defining the length of the record, and then the record name. Each record terminates with
the @END_RECORD keyword followed by the record name. Fields can then be defined
within the BEGIN and END of the record by using @Insertword and @insertnumber.

LINUX @BEGIN_RECORD
WINDOWS @BEGIN_RECORD

RECORD DESCRIPTION
@BEGIN_RECORD record_length,A01_Record

@insertnumber AO1_No1l, 00, '99999'
@insertnumber AO1_No2, 00, '99999
@insertnumber AO1_No3, 00, '99999'

@insertnumber AO1_Wordl, 10,"'
@insertnumber AO1_Word2, 10,''
@END_RECORD A01_ Record

The files module must be informed of the record length and it is Parameter 1 or the
@BEGIN_RECORD keyword that accomplishes this.

RECORD NO

When a record is used for File access, languageONE provides a Record Number which
may be used to access records in a random manner rather than sequentially [one after the
other]. This access method is termed 'relative’ or 'random’'. The Record Number is the
record name followed by ' NO', so in the case above the record no field will be
A01_Record_NO.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
13 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

TABLES

Tables are defined in languageONE as structured internal storage. They are treated very
similarly to Files but unlike files must ALWAYS have a record associated with them and thus
are almost synonymous with random access files. This allows file records to be read into storage
quite efficiently. You insert a table by defining its size (Record Length) times No Of Records that
you require.

The 'TABLES' section is the area of the program where tables may be described. The
'BEGIN.TABLES' directive is used to inform the system that Table descriptions will begin here.
The 'END.TABLES' directive is used to inform the system that the definitions are complete.

LINUX %include “BEGIN.TABLES”
WINDOWS Include <BEGIN.TABLES>
INSERT TABLE

@INSERTTABLE WorkTable, RecordLength * NoOfRecords

Inserting a table defines the table name and the overall size of the table, defined as the record
length times the number of records. Before a table can be used it must be bound.

BIND TABLE

LINUX @TABLES_BIND
WINDOWS @TABLES_BIND

@TABLES BIND WorkTable,A01 Record,NoOfRecords

While the @INSERTTABLE keyword tells languageONE about the overall size of the table,
@TABLES_BIND, binds a record to the table and defines the dimensions. It is coded within
the body of the program (following the %include BEGIN.INSTRUCTIONS)

Of course Tables/Arrays can have more than 2 dimensions. languageONE allows up to 9
dimensions (you count the record as the 1st dimension.). They are defined by first INSERTing
a TABLE with the dimensions detailing the size and then by binding a record to the table.

ie @TABLES BIND WorkTable2,A01_Record,3,4

If you use an analogy like pages in a book you could say that the record defines the words
across the page, the 3 defines the lines down the page and the 4 defines the pages. You can
expand this analogy with an extra dimension defining books. So the index 3,4,5 would define
3 books, 4 pages, and 5 lines leaving the record to define the words across the line.

@INSERTTABLE WorkTable2,RecLength*3*4*5
@TABLES BIND WorkTable,A01 Record,3,4,5

Tables are read or written by providing the required index(s) numbers in the get and put
operations. Refer further ahead.

Note:- The languageONE reWriter cannot infer indexed table elements {ie. ltem[1] = 1}
coded prior to the BIND command.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
14 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

XTABLES

XTables are large tables that have been optimised for use with indexed files, they may however

be used for any other purpose. They are single dimension tables with memory being allocated at
runtime.

INSERTXTABLE
@INSERTXTABLE LargeTable

Inserting an XTable defines the table name. Before a table can be used it must be bound.
BIND XTABLE

LINUX @XTABLES_BIND

WINDOWS @XTABLES_BIND

@XTABLES BIND LargeTable,Record,Size

While the @INSERTXTABLE keyword tells languageONE the xtables name,
@XTABLES_BIND, binds a record to the table and defines the tables size. It is coded within
the body of the program (following the BEGIN.INSTRUCTIONS)

NOTE:- An XTABLE contains an extra 9 bytes at the front of each record to hold a Delete
Flag and an Index and must be taken into account when defining the xTable size.

Size = NoOfRecords*(RecordLength + 9)

Note:- The JlanguageONE reWriter cannot infer indexed table elements {ie. ltem[1] = 1}
coded prior to the BIND command.

ARRAYS (Integer)

An Array — introduced in Version V2.10 - is a contiguous no of integers (all numbers are
represented as qwords in languageONE) with memory being allocated at runtime. They do not
have the control block normally associated with a languageONE data structure and therefore
must be accessed via the ARRAYS.LIB package. As of version V3.01 multi-dimension arrays
may be coded.

A new Quick Sort algorithm has been coded for Arrays in order to optimise the sort speed of
integers. Only single-dimension arrays may be sorted. The TABLES section is the area of the
program where Arrays may be described.

INSERTARRAY
LINUX @InsertArray
WINDOWS @InsertArray

@InsertArray ArrayName,6,12,16

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
15 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

SIMPLE INTEGER ARITHMETIC

There are 6 simple arithmetic commands in languageONE that are not part of the NUMBERS.o
object package but available to every languageONE program. It must be noted though that they
have an almost 1 to 1 relationship to their underlying assembler equivalents and are not error
checked in anyway.

If you add 1 to 9,223,372,036,854,775,807 you will get -9,223,372,036,854,775,808.
However, if you are careful, they are the best way to use integers

EQUALS
LINUX @integers_eq w_MyNumber,123
WINDOWS @integers_eq w_MyNumber,123
COOKED w_MyNumber = 123

ADD
LINUX @integers_add w_MyNumber,123
WINDOWS @integers_add w_MyNumber,123
COOKED w_MyNumber = w_MyNumber + 123
COOKED(Shorthand) | w_MyNumber =+ 123

SUBTRACT
LINUX @integers_sub w_MyNumber,123
WINDOWS @integers_sub w_MyNumber,123
COOKED w_MyNumber = w_MyNumber - 123
COOKED(Shorthand) | w_MyNumber =- 123

MULTIPLY
LINUX @integers_mul w_MyNumber,123
WINDOWS @integers_mul w_MyNumber,123
COOKED w_MyNumber = w_MyNumber * 123

COOKED(Shorthand) | w_MyNumber =* 123

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
16 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

DIVIDE (Note:- that for this integer function, the remainder will be lost.)

LINUX @integers_div w_MyNumber,123
WINDOWS @integers_div w_MyNumber,123
COOKED w_MyNumber = w_MyNumber / 123
COOKED(Shorthand) | w_MyNumber =/ 123

CALCULATE (Applies each operation to the destination field working from left to right of the
source integers.)

LINUX @integers_calc w_MyNumber,=,128,*,64,-,32
WINDOWS @integers_calc w_MyNumber,=,128,*,64,-,32
COOKED w_MyNumber = 128 * 64 - 32

SETTING PRECEDENTS

The order of an integer operation my be directed by way of square brackets. As an example:-
A =[[8 + B] * 3] + 5 will direct languageONE to evaluate the [8 + B] 1s, multiply the result by
3 2nd and finally add 5 to the answer. The reWriter will enable this by developing the operation
one by one within a macro and apply those values to the final calculation. The original line of
code will be commented and replaced by the system developed macro name.

In essence square brackets say to languageONE, do this 1st

LOGICAL EXPRESSIONS

There are 3 logical expressions in languageONE that are not part of the NUMBERS.o object
package but available to every languageONE program. It must be noted though that they have
an almost 1 to 1 relationship to their underlying assembler equivalents and are not error
checked in anyway.

LOGICAL AND
LINUX @integers_and w_MyNumber,Number/Literal
WINDOWS @integers_and w_MyNumber,Number/Literal
LOGICAL OR
LINUX @integers_or w_MyNumber,Number/Literal
WINDOWS @integers_or w_MyNumber,Number/Literal
LOGICAL XOR
LINUX @integers_xor w_MyNumber,Number/Literal
WINDOWS @integers_xor w_MyNumber,Number/Literal

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
17 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

CONSTANTS

are a way of giving a name to a value. It is good programming practise and will save you a lot
of headaches further on. As an example a record length may be used in several places and so
by replacing the value with the constant ¢c_RecordLength the record length can be changed in
one spot (at its definition) and be correct in every use of the constant.

Linux

Constants are defined by the use of the %define directive.
%define c_NoOfRecords 1024
%define c_Size 47*1024
%define c_Size (47 * 1024) + 88
%define c_Size ¢_RecordLength*c_NoOfRecords

Windows

Define constants with the EQU and preceed the constant with a “%” (percentage sign) when
used following its definition.

¢_NoOfRecords EQU 1024

c_Size EQU 47 * 1024

c_Size EQU (47 *1024) + 88

c_Size EQU %c_RecordLength

c_Size EQU %(c_RecordLength*c_NoOfRecords)

note:- When 2 constants are used together bracket them and use only a single % sign Inline

ASSEMBLER

There is no package required to include assembler code within a languageONE program. As
noted languageONE IS assembler, but for the reWRITER to ignore assembler code in should be
enclosed within @BEGIN_RAW and @END_RAW keywords. The same is true for raw
(uncooked) languageONE code being submitted to the reWriter

@begin_raw

push rax

pop rbx

@words_copy w_Word1,{w_Word2,5,3}
@end_raw

may be coded anywhere following the %include 'BEGIN.INSTRUCTIONS' directive. Data should
be coded following the correct use of section directives.

LINUX Section .data
@insertword w_Hello, 5,"Hello”
Section .text

WINDOWS .data
@insertword w_Hello, 5,"Hello”
.code

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
18 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

LANGUAGEONE RUNTIME SYSTEM
INTRODUCTION

languageONE delivers functionality via keywords. Each keyword is an assembler macro that
is used to manage the parameters and make a call to one of the languageONE object modules.
(In this way, if a particular object module is not required you will not have to link it in). Keywords
are case-Insensitive such that @CURSOR, @cursor or even @CuRsOr are acceptable forms
of coding.

ARRAYS.LIB Array processing services

COMMONL.LIB Common/General processing services
DECISIONS.LIB |Decision making services

FILES.LIB File Handling Services
NUMBERS.LIB |Fixed point number services
STDIO.LIB Standard Console services
TABLES.LIB Table processing services
WORDS.LIB AlphaNumeric processing services
WWW.LIB Network processing services

XTABLES.LIB Xtable processing services

Note:- the languageONE object modules are delivered in a library named languageONE.lib
and it is this that is linked to your program.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
19 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

COMMON.LIB
The COMMON.LIB module provides generalised routines for languageONE.

GET THE CURRENT DATE

LINUX @Date_Get
WINDOWS @Date_Get

@date_get noofdays,datestring
Returns the current number of days and date

noofdays is an integer value defined as the number of days from the linux epoch
(1970/01/01).
datestring is a 10 character word containing a date formatted as CCYY/MM/DD

Number of Days is useful in the processing of past or future dates. A @date_get will return
the no of days associated with the current date. By adding/subtracting a numeric value to
the no of days and then performing a @date_datefromdays a future or past date can be
calculated.

DATE FROM DAYS

LINUX @Date_DateFromDays
WINDOWS @Date_DateFromDays

@date_datefromdays noofdays,datestring
Returns the date associated with the No Of Days passed.

DAYS FROM DATE

LINUX @Date_DaysFromDate
WINDOWS @Date_DaysFromDate

@date_dayefromdate noofdays,datestring
Returns the No Of Days associated with the Date passed.This function should be used
when validating a date. If the date is invalid then the system field ERROR_CODE will be set
tol

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
20 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

SECONDS
LINUX @Date_Seconds
WINDOWS @Date_Seconds

@date seconds seconds
Returns the no of seconds from the linux epoch (1970/01/01).
@InsertNumber Seconds, 0,'99999999999999999999999999'

@date_seconds is useful in performing “stop-watch” functions. Store the no of seconds
prior to starting a process and subtract it from the no of seconds at the process end to
produce an elapsed time.

TIMER
LINUX @Date_Timer
WINDOWS @Date_Timer

@date_timer seconds,milliseconds
@InsertNumber seconds, 0,'99999999999999999'
@InsertNumber milliseconds, 0,'.999999'

@date_timer is useful in performing “stop-watch” functions that require more accuracy than
@date_seconds

RUN (BATCHED)

LINUX @Run
WINDOWS @Run

@Run Command,ResponseFileHandle

This keywords allows a program to run another program. Filename must be either a binary
executable, or a script. Note that in this release a fully qualified name ie “path/program”
must be provided. le “/usr/bin/nasm”

The macro returns a system variable, CHILD_PID defining the new running process's
'Process Identification Number’

The macro returns a FileHandle that duplicates the child process's STDOUT and STDERR.
This file should not be opened by the calling process but must be closed by it. Read this file
to collect the called programs output

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
21 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

RUN (INTERACTIVE)

LINUX @Run
WINDOWS @Run

@Run Command

This keywords allows a program to run an interactive program (generally a terminal). Note
that in this release a fully qualified name ie “path/program” must be provided. le
“/usr/bin/xterm”

NOTE:- languageONE will decide whether a BATCH or an INTERACTIVE call is being made
by noting the number of parameters that are passed.

WAIT
LINUX @Wait
WINDOWS @Wait

@Wait Processld

This keyword, followed by a Process Identification Number,will suspend your program until
the program identified by integer has completed

[WINDOWS]

When running a program on a windows system, it has been found that buffers for StdOut are
NOT cleared when StdOut is closed or the sub-ordinate program terminates. In the absence
of a setbuf or fflush call being available the following work around may be used:-

Define a file
@insertfile ¢_LF,STDOUT

Set the handle to StdOut (Note that the file does not have to be opened)

@begin_raw

push gword[StdOutHandle]

pop qword[STDOUT_HANDLE]
@end_raw

Write to this file rather than using display statements
@files_write STDOUT,"Your text goes here'

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
22 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

STDIO.LIB

The STDIO.LIB object module provides input/output routines for the Linux terminal. Fields used
in a STDIO call may be literals, words from the dictionary and numbers from the matrix. The
following keywords are supported:-

CURSOR
LINUX @Cursor
WINDOWS @Cursor

@Cursor row,column

positions the cursor on the screen detailed by the row and column parameters. ie.
@Cursor 03,05

Note:- cursor sets the values of the system variable ¢_Cursor. You must perform a
@display ¢_Cursor for the cursor to be positioned.

DISPLAY
LINUX @Display
WINDOWS @Display
@Display field,field,field,field,....

Displays the listed fields on the screen. Any number of fields may be passed. A useful field
to use here could be the predefined field LF. This is the linefeed character and when used
as the last field of the display keyword will trigger a linefeed following the last field listed.

DISPLAY LINE

LINUX @Display_Line
WINDOWS @Display_Line
@Display field,field,field,field,....

Displays the listed fields on the screen and follows each one with the linefeed character. It
is the equivalent of coding “display field,LF,field,LF,field,LF...”

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
23 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

DISPLAY AT
LINUX @Display_At
WINDOWS @Display_At

@Display_At 05,06,"Hello World”

Displays the listed field on the screen at the specified row and column position. It is
equivalent of coding: “cursor 03,02" followed by “display ¢_Cursor,field”. Note:- it makes no
sense to display more than one field

ACCEPTLINE
LINUX @Acceptline
WINDOWS @Acceptline

@Acceptline w_Input

Accepts the listed field on the screen from the current cursor position. Only a single field at
a time can be accepted. The field is terminated when the <ENTER> key is pressed.

ACCEPTLINE.AT

LINUX @Acceptline_at
WINDOWS @Acceptline_at

@Acceptline_At 05,06,w_Input

Accepts the listed field on the screen at the specified row and column position. It is
equivalent of coding: “cursor 03,02” followed by “acceptline ¢c_Cursor ,field”

ACCEPT AT

LINUX @Acceptt_at
WINDOWS @Accept_at

@Accept_At 05,06,w_Input

Accepts the listed field on the screen at the specified row and column position. This differs
from the other accept keywords in that it restricts the number of characters entered to the
size of the receiving field. It also reports any function key that has been pressed. It is useful
when full screen applications are being developed.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
24 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

SCREEN ATTRIBUTES

The following screen attributes may be “display”’ed to manage a terminal.
TERMINAL COLOURS

Foreground/Background

v_BlackFG v_WhiteFG v_BlackBG v_WhiteBG
v_DarkGreyFG v_LightGreyFG v_DarkGreyBG v_LightGreyBG
v_RedFG v_LightRedFG v_RedBG v_LightRedBG
v_GreenFG v_LightGreenFG v_GreenBG v_LightGreenBG
v_YellowFG v_LightYellowFG v_YellowBG v_LightYellowBG
v_BlueFG v_LightBlueFG v_BlueBG v_LightBlueBG
v_MagentaFG v_LightMagentaFG v_MagentaBG v_LightMagentaBG
v_CyanFG v_LightCyanFG v_CyanBG v_LightCyanBG
v_DefaultFG v_DefaultBG

Attributes/Graphics Characters

v_Bold v_ResetBold v_BottomRight v_TopRight
v_Dim v_ResetDim v_BottomLeft v_TopLeft
v_Underlined v_ResetUnderlined v_LeftMiddle v_RightMiddle
v_Blink v_ResetBlink v_BottomMiddle v_TopMiddle
v_Reverse v_ResetReverse v_Cross v_Line
v_Hidden v_ResetHidden v_Bar

v_ResetAll v_ClearScreen

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
25 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

Returned by @Accept_At

Constant Value
¢ RETURN 000
¢ FUNCTIONKEY1 001
¢ FUNCTIONKEY?2 002
c_FUNCTIONKEY3 003
¢c_FUNCTIONKEY4 004
¢ FUNCTIONKEY5 005
¢ FUNCTIONKEY®6 006
¢ FUNCTIONKEY7 007
¢ FUNCTIONKEY8 008
¢ _FUNCTIONKEY9 009
¢ FUNCTIONKEY10 010
¢ FUNCTIONKEY11 011
¢ FUNCTIONKEY12 012
c ALT 013
¢ ARROWUP 014
¢ ARROWDOWN 015
¢ ARROWRIGHT 016
¢ ARROWLEFT 017
¢ END 018
¢ HOME 019
¢ INSERT 020
¢ ENDOFFIELD 021
¢ ESCAPE 027
¢ BACKSPACE 127
¢ NONE 999

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
26 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

WORDS.LIB

The WORDS.LIB module provides string handling routines. They function from left (source) to
right (destination). Although there is “_copy” keyword, a copy is always done when a second field
is coded, such that you may code- “words.uppercase w_Name” to change the characters in
w_Name to upper case and you may also code “words.uppercase w_Namel,w_Name2 to copy
the w_Namel to w_Name2 and change w_Name2 to upper case. In this example w_Namel
would be left unchanged. The following keywords are supported:-

COPY
LINUX @Words_Copy
WINDOWS @Words_Copy

@Words_Copy Source,Destination

This will copy the number of characters held in Sourcefield to Destinationfield. Reminder: If
the Sourcefield is shorter than the Destination field, NO padding will take place. Note that
although languageONE will accept “@words_copy w_Name”, it does not make sense to do

SO.
PAD
LINUX @Words_Pad
WINDOWS @Words_Pad
COOKED Wordl1 = Word2

@Words_Pad Source,Destination

Performs the same function as COPY but will pad a longer Destinationfield with spaces.
The sourcefield may be a numeric field and it is this routine that may be used to convert
numbers to alphanumerics.

UPPERCASE
LINUX @Words_Uppercase
WINDOWS @Words_Uppercase

@Words_Uppercase Source,Destination(Optional)

Will copy the Sourcefield to the Destination field and convert the Destinationfield to all upper
case characters. Coding “@Words_uppercase Sourcefield” will convert the Sourcefield to
all upper case characters

LOWERCASE
LINUX @Words_Lowercase
WINDOWS @Words_Lowercase

@Words_Lowercase Source,Destination(Optional)

Will copy the Sourcefield to the Destination field and convert the Destination field to all
Lower case characters. Coding “@Words_Lowercase Sourcefield” will convert the
Sourcefield to all Lower case characters

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
27 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

INSERT
LINUX @Words_Insert
WINDOWS @Words_Insert

@Words_Insert Source,Destination

Inserts the Sourcefield into the Destinationfield by moving Destination characters to the
right. This works well when qualified. ie- @words_insert “RET” {Destinationfield,5} says
insert the word “RET” into the Destination field starting at the 5th character

FIND

LINUX @Words_Find {“text”,Counter},”Biblical Text”
WINDOWS @Words_Find <<"text”,Counter>>,"Biblical Text”
Locates the phrase “text” in the literal and returns the character position in counter

REPLACE

LINUX @Words_Replace {“ret”,”rog"},Word1
WINDOWS @Words_Replace <<"ret",”rog">>Word1l
Locates all occurrences of “RET” in wordl and replaces them with “ROG”

ENVIRONMENT

LINUX @Words_Environment
WINDOWS @Words_Environment

@Words_Environment DestinationField

A special WORDS function that will return the command line parameters and store them in
Destination field

LENGTH
LINUX @Words_Length
WINDOWS @Words_Length

@Words_Length Word,Length

A special WORDS function that will return the length of a word

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
28 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

STRING TO RECORD

LINUX @Words_StringToRecord
WINDOWS @Words_StringToRecord

@Words_StringToRecord String, Record

A WORDS function that will populate a record from a string. This is required because fields
are manage by a control structure and records being a collection of fields are managed by
multiple control structures

RECORD TO STRING

LINUX @Words_RecordToString
WINDOWS @Words_RecordToString

@Words_RecordToString Record,String

A WORDS function that will populate a string from a record. This is required because fields
are manage by a control structure and records being a collection of fields are managed by
multiple control structures

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
29 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

NUMBERS.LIB

The NUMBERS.LIB module provides fixed point number handling routines. They function from
right (source) to left (destination). Note that although NUMBERS.LIB can handle integers, the 6
inbuilt integer functions (@integer_eq, @integer_add, @integer_sub, @integer_mul,
@integer_div, @integer_calc) are more efficient. Remembering the integer functions have no
error correction it is best to use NUMBERS.LIB for integers when range boundaries are expected

to be crossed. Also remember NUMBERS.LIB will round up or down while Integer maths will just
truncate.

e Unsigned: All numbers will be considered as signed
e Signed: From -9,223,372,036,854,775,807 to 9,223,372,036,854,775,807

EQUALS

LINUX @Numbers_eq n_No, {123,79.99}
WINDOWS @Numbers_eq n_No, <<123,79.99">>
COOKED n_No = {123,79.99}

@Numbers_eq n_Dest,n_Src
Sets the value of Destinationfield to Sourcefield. The sourcefield in this case may be an
alphanumeric field and it is this routine that may be used to covert alphanumerics to

numbers
ADD
LINUX @Numbers_add n_No, {123,79.99}
WINDOWS @Numbers_add n_No, <<123,79.99">>
COOKED n_No =n_No + {123,79.99}

@Numbers_add n_Dest,n_Src
Adds the value of Sourcefield to Destinationfield

SUBTRACT
LINUX @Numbers_sub n_No, {123,79.99}
WINDOWS @Numbers_sub n_No, <<123,"9.99">>
COOKED n_No =n_No - {123,79.99}

@Numbers_sub n_Dest,n_Src
Subtracts the value of Sourcefield from Destinationfield

MULTIPLY
LINUX @Numbers_mul n_No, {123,79.99}
WINDOWS @Numbers_mul n_No, <<123,"9.99">>
COOKED n_No = n_No * {123,79.99}

@Numbers_mul n_Dest,n_Src
Multiplies the Destinationfield by the Sourcefield

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
30 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

DIVIDE
LINUX @Numbers_div n_No, {123,79.99}
WINDOWS @Numbers_div n_No, <<123,79.99">>
COOKED n_No =n_No/{123,79.99}

@Numbers_div n_Dest,n_Src
Divides the Destinationfield by the Sourcefield

OVERLOADING

A feature of the NUMBERS.LIB package is that these macros may be “overloaded”, meaning
that more than 1 Sourcefield may be coded. ie:-

@Numbers_add Destinationfield,2,4,16,32
This would add 2 then 4 then 16 and then 32 (Total of 54) to the Destinationfield

This can be a useful in many ways. Take for example cubing a number.

With the following defined in the matrix
Insertnumber w_nol, 3
Insertnumber w_no2, 3

You can overload the multiplication to effect a cubing of the number
@numbers_mul w_nol,w_no2,w_No2

CALCUATE
LINUX @Numbers_calc n_No,=,{123,79.99},+,1.23,-,n_No2
WINDOWS @Numbers_calc n_No,=,<<123,"9.99">> +,1.23,-,n_No2
COOKED n_No =n_No +{123,79.99} + 1.23 - n_No2

Applies each operation to the destination field working from left to right of the source
numbers (Number precedence will be followed if square brackets are used).

RANDOM

LINUX @Numbers_Random n_No

WINDOWS @Numbers_Random n_No
Returns a random number in the range 0 thru 65,536.

Note: that this function is not intended to return a random number that can be relied upon for
robust applications. It merely takes the number of nano-seconds, splits it into 2 16bit words,
xor's the 2 and delivers the result. By definition it has the range of O thru 65,536. You may
restrict its range by ANDing it with a mask ie: to obtain a number between 0 and 6 (ie a throw
of a dice) ADD the returned value by 0110B. If a more “industrial strength” random no is
required it can be obtained in:

e Linux - investigate the /dev/<u>random file system

e Windows - refer CryptoAPI

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
31 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

DECISIONS.LIB

The DECISIONS.LIB module provides for decision making in languageONE. In reality it performs
one function, that of a compare. The many manifestations of that are handled by the macros

themselves.

The following table describes operation equivalences. Only Constants are allowed in Windows

languageONE
Version 3

but the reWriter will handle conversion from the literal [=,!=, etc] to the Constant
EQ, NEQ,etc]

Equals _EQ =

iSNOTEqualTo _NEQ I=

isLessThan LT <

isSNOTLessThan _NLT I<

isGreaterThan _GT >

iISNOTGreaterThan _NGT I>

In _IN

Not In _NIN

You are free to add to this table by editing DECISIONS.INC and describing your own operations

name

Note: for the decisions module:-

RAW

As Shown

COOKED

No Commas required

IF STATEMENTS

@IF w_nol,=,w_no2

Do Something

@ELSE

Do Something Else

@END.IF

This is a fairly standard If statement and is no different from most languages. There is no elseif

statement in languageONE because it is easily handled. ie.

@IFw_no_1,=w_no2

Do Something

@ELSE

@IF w_Alpha,=,“A"
Do Something

@ELSE

Do Something Else

@END.IF
@END.IF

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
32 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

IF STATEMENTS...Cont

Equally, you could use the line splitting character

@IFw_no_1=w_no2
Do Something
@ELSE | @IF w_Alpha = “A”
Do Something
@ELSE
Do Something Else
@END.IF
@END.IF

@ _IF, @_OR, @_AND, @_END Compound Ifs are defined as those that contain '@_or" or
'@_and' statements. They must begin with an '@_if' and be terminated with an '@_end'

In order to understand the @_AND the @ OR statement you must consider how
languageONE functions. An @ _|IF statement will set a flag as either TRUE of FALSE.
Subsequently an @_OR statement will proceed if the flag is so to FALSE (no need to do
anything if the previous @ _IF returned a TRUE) and set the same flag to either TRUE or
FALSE. Similarly an @ AND statement will proceed if the flag is set to TRUE (nho need to do
anything if the previous @_IF returned a FALSE) and set the same flag to either TRUE or
FALSE.

You must be careful with this as languageONE has no way (at present) of bracketing OR's and
AND's (remember brackets are simply removed) and cannot evaluate something like:-
IF (A=B AND C=D) OR (A=C AND (B=D OR E=F))

The following will achieve the same thing. It's just a little bit cumbersome at present. This will
be addressed in a later release.

@_IFA=8B
@ ANDC=D
@_END

Do Something
@END.IF

@ IFB=D
@_ORE=F
@_ANDA=C
@_END

Do the same Thing
@END.IF

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
33 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

THE _IN OPERATOR

The _IN operator can be used to interrogate lists. Although it is simply a compound “if” it
allows for perhaps cleaner coding. Note though that fixed point numbers cannot be coded
with the _IN operator as this would result in a double set of braces.

@IF w_Nol IN{1,2,4,8,16,31,64} [YES]
@IF w_Nol IN {{123,'9.99},{456,'9.99}} [NO]

THE _NIN OPERATOR

The _NIN operator can also be used to interrogate lists. It does in fact invoke the _IN decision
and then negates the answer. ie.

@IF w_Nol NIN {1,2,4,8,16,31,64}
TEST Statements

This is a fairly standard statement seen in most languages.

In COBOL itis EVALUATE,
In PASCAL itis CASE OF,
In Citis SWITCH/CASE,
In BASIC it is SELECT CASE etc etc.
It takes the following forms in languageONE.

@BEGIN.TEST w_No1l
@WHEN < 1
Do Something
@WEND
@WHEN < 2
Do Something
@WEND
@OTHERWISE
Do Something Else
@END.TEST

@BEGIN.TEST c_TRUE
@WHEN A=B
Do Something
@WEND
@WHEN C>D
Do Something
@WEND
@WHEN E !> D
Do Something
@WEND
@END.TEST

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
34 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

TEST statements...cont

@ _WHEN, @ OR, @ AND, @_END

Compound Whens are defined as those that contain '@ _or' or '@_and' statements. They
must begin with a'@_when' and be terminated with a'@_wend'

@BEGIN.TEST ¢c_TRUE
@ WHENA=B
@ AND X =Y
@ _END
Do Something
@WEND
@ WHENC>D
@ ANDJ=K
@ END
Do Something
@WEND
@ WHENE!>D
@ ORZ=W
@ _END
Do Something
@WEND
@OTHERWISE
Do Something else
@END.TEST

_IN and _NIN may be used when testing for TRUE

@BEGIN.TEST ¢_TRUE
@WHEN _IN {1,2,3,4,5}
Do Something
@WEND
@WHEN _NIN {1,2,3,4,5}
Do Something Else
@WEND
@END.TEST

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
35 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

LOOPS

The is no module providing functionality for looping. It is built into the macros themselves as they
are only a comparative jump statement. They take 2 forms:-

@REPEAT_IF (@REPEAT_WHILE)

It should be noted that @repeat_if and @repeat_while are functionally equivalent. They are
both provided to suit programming style.

@REPEAT _IF <condition>
Do Something
@END_REPEAT

A @repeat_if statement has a built in condition which is evaluated at the top of the loop.

NOTE:-

When multiple conditions are needed you may use the system supplied exitRepeat field.
This flag is always tested at the top of the loop and an exit performed if it is found to be true.
Note that any code following the exit will still be executed so it is advisable to code an else
to allow your instructions to execute correctly. Note that @ OR & @_AND are not suitable
for loops. (This will be revisited in a later version)

NOTE:-
the @EXIT_REPEAT macro has been modified to set the exitRepeat flag to true.

@REPEAT_WHILE1=1
@IFB=2
@EXIT_REPEAT
@ELSE
Do Something
@END.IF
@END_REPEAT

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
36 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

LOOPS....cont

@REPEAT_FOR

@REPEAT_FOR <counter>,<start>,<stop>,<step>
Do Something
@END_REPEAT

A @repeat_for statement has a built in count function which is evaluated at the top of the
loop. You provide the counter, the starting value, the ending value and the step (if other than
1)

When multiple conditions are needed you may use the system supplied exitRepeat field. This
flag is always tested at the top of the loop and an exit performed if it is found to be true. Note
that any code following the exit will still be executed so it is advisable to code an else to allow
your instructions to execute correctly. Note that @ OR & @_AND are not suitable for loops.
(This will be revisited in a later version)

@Repeat_for Ctr,1,128,2
@ifA=1
@EXIT_REPEAT
@else
Do Something
@end.if
@end_repeat

NOTE

when the start value is less than the stop value then the loop will subtract the step value
from the counter. You will be counting backwards. when the start value is equal to the
stop value the loop will add to the step value unless a -ve step value is coded

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
37 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

SUB ROUTINES
OVERVIEW

Using Sub Routines is the common programming practice of breaking up programs into
smaller and more manageable tasks. They start with the 'keyword' @BEGIN_SUB followed by
a unigue name that you choose. They end with the 'keyword' @ _END_SUB followed by the
same unique name you have chosen. They may also contain an @EXIT_SUB (followed by the
same unique name) to exit the sub routine depending on your coding decisions. To invoke a
Sub Routine you use the 'keyword' @CALL followed by the Sub Routines hame. Sub Routines
may invoke other Sub Routines.

PASSING PARAMETERS

Version 3.01 developed the use of numeric parameters for Subroutines and Functions. It is
implemented by the @CALL and the @USING macros. The Call is coded as follows:-

RAW @cCall A-SubRoutine,n_Num,3
COOKED @cCall A-SubRoutine n_Num,3

Note that in the raw version of languageONE a comma is required after the Subroutine name.

The @CALL macro must be matched by a @USING macro immediately following the
@BEGIN_SUB macro, as follows:-

@BEGIN_SUB A-SubRoutine
@USING {_argl1,'99.99'}{ arg2,9'}

each argument should be enclosed in braces and include a picture definition. As of version
3.01 the datanames are NOT local to the subroutine and must be unigue within the program.

FUNCTIONS
BOOLEAN FUNCTIONS

Boolean Functions are available in languageONE. They start with the ‘keyword'
@BEGIN_FUNCTION followed by a unique name that you choose. They end with the
'keyword' @END_FUNCTION followed by the same unigue name you have chosen. They
may also contain an @EXIT_FUNCTION (followed by the same unique name) to exit the
function depending on your coded decisions.

Boolean functions are automatically set to return FALSE while a TRUE result may be indicated
by setting RETURN_CODE to TRUE.

They maybe coded after the following keywords:-

@IF — @OR — @AND - @REPEAT_IF (@REPEAT_WHILE) - @WHEN

ie:-
@if valid_date
display “A valid date has been entered”
@endif

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
38 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

NUMERIC FUNCTIONS
Version 3.01 expanded functions to return numeric values and to be passed parameters (refer
to SubRoutines above). When coding a numeric function you should include a picture following
the function name:-
f_Squared,’999999’
In this way a field called df Squared, using the picture that has been coded, will be created.

@BEGIN_FUNCTION f_Squared,’999999’
@USING {_arg1,'999'}

@INTEGERS_EQ df _Squared, argl
@INTEGERS_MUL df_Squared,_argl

@END_FUNCTION

RAW @FUNCTION I,f_Squared,{3,'9}
COOKED | =f_Squared(3)

Note that | will be populated with df_Squared in the above example

RAW @IF {f_IsNumeric,3}
COOKED @IF {f_IsNumeric,3}

Note that in an IF/AND/OR statement the function should set RETURN_CODE to true or false

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
39 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

FILES.LIB

The FILES.LIB module provides file access routines for languageONE. It manages both
sequential, random, indexed and directory access. The following keywords are supported:-

OPEN

A file must be opened before it is able to be accessed. (and closed after it is not needed). This
is performed by the keyword

@files_open |_Name, Action is used to perform this action, where Actions consist of:-

$read The file will be available for reading only
$write The file will be available for writing to only
$readwrite The file will be available for both reading and writing

When a file is opened write or readwrite you may select starting the write operations from the
beginning of the file (thereby overwriting the file) or at the end of the file (appending records to
the file). This is achieved by adding (with a + sign) the keywords “$beginning” or “$end”. This
would look like:-

@files_open WorkFilel,$write+$beginning

A file may be opened for exclusive use. This is done by adding (with a + sign) the keyword
“$lock”. This would look like

@files_open WorkFilel,$write+$beginning+$lock
READ

There are two forms of the read keyword depending on if you are reading into a record or a
series of fields. They are:-

files_read |_Name, record, <optional record no(for files of records)>
ie: @files_read File, Record,Record_No
will yield the same result as:
@integers_eq Record_No,1
@files_read File,Record

files $read, | _Name, field, field, field.....
WRITE

There are two forms of the write keyword depending on if you are writing a record or writing a
series of fields. They are:-

files_write |_Name, record, <optional record no(for files of records)>
ie: @files_write File, Record,Record_No
will yield the same result as:
@integers_eq Record_No,1
@files_write File,Record

files $write, |_Name, field, field, field.....

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
40 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

DELETE

Deletion may only take place when files are accessed randomly (with a record). The command
takes the form:-

@Files_delete | _Name, record,<optional record no(for files of records)>

and is managed by virtue of the Record No associated with the record. |_Name_NO
Although languageONE will delete the record regardless, it is always good practise to perform
a read operation first. This make it easier to assist any user who's intention it is to delete the
record.

ie: @files_delete File, Record, Record_No

will yield the same result as:
@integers_eq Record_No,1
@files_delete File, Record

NOTE:- Records are never physically deleted from a file. languageONE reserves the 1st
character in a randomly organised file and maintains its value as either:-

0x01 represents a “live” record
0x00 represents a deleted record

These records may be restored by editing the file and altering this value to 0x01

NOTE:-Xtables contains a LOAD and UNLOAD function which makes it simple to purge
deleted records.

CLOSE

Files must be closed when your program terminates. The command takes the form:

@files_close |_Name

COPY

The files module provides a very thin wrapper that allows in kernel copying of files. This is a
more efficient method of copying entire files as it is all done within the kernel (as opposed to
user space)

@files_copy ExternalNameFrom, ExternalNameTo

NOTE:- Use Dictionary words.
@insertword FileNamel, 09,{'External Name',00h}
@insertword FileName2, 09,{'External Name',00h}

Replace braces in the above if coding in raw Windows format

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
41 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

RENAME

The files module provides a very thin wrapper that allows for file renaming.
@files_rename ExternalNameFrom, ExternalNameTo

NOTE:- Use Dictionary words.
@insertword FileNamel, 09,{'External Name',00h}
@insertword FileName2, 09,{'External Name',00h}

Replace braces in the above if coding in raw Windows format
REMOVE

The files module provides a very thin wrapper that allows for file deletion.
@files_remove ExternalName

NOTE:- Use Dictionary words.
@insertword FileName, 09,{'External Name',00h}

Replace braces in the above if coding in raw Windows format
CHDIR

This changes the current directory to that of DirectoryName. Relative or Absolute.
@files_chdir DirectoryName

NOTE:- Use Dictionary words.
@insertword DirectoryName, ?? {'External Name',00h}

Replace braces in the above if coding in raw Windows format
GETCWD

@files_getcwd DirectoryName
Returns an absolute path of the current work directory

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
42 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

RANDOM ACCESS FILES

The following are commands that are available to random and indexed access files only.

START

Because files may contains deleted records and holes, a start command will return the 1st
valid record and its record number. By initially providing the record number you will determine
the starting position. The command takes the form:

@files_start |_Name, record, <optional record no>
And is managed by virtue of the Record No associated with the record. |_Name_NO

ie: @files_start File, Record,Record_No

will yield the same result as:
@integers_eq Record_No,1
@files_start File, Record

NOTE:-If you create a random access file with 2 records (1 & 3) then a “Hole” will exist
in the file. That is a vacant spot in the file containing a record of nulls.

NEXT
Following a start, the next routine will return the next valid record (excluding deleted
records and holes). The command takes the form:
@files_next I_Name, record
DIRECTORIES
The following are commands that are available when reading a directory.
OPEN

A directory is given in the insertfile macro or may be dynamically assigned during program
procedures.

READ

Directories are read sequentially from start to end. Note that the order of files/directories
returned may not be consistent or as you may expect. The following RETURN_CODE
may be interrogated following this call

e when =00 : [Linux only] Unknown Entry
e when =01 : [Linux only] FIFO Entry
e when =02 : [Linux only] Character Device
e when = 04 : Directory
e when =06 : [Linux only] Block Device
e when =08 : File
e when =10 : [Linux only] Symbolic Link
e when =12 : [Linux only] Socket
e when = 14 : [Linux only] WhiteOut
CLOSE

Close the directory

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
43 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

RECORD LOCKING

Record locking is performed slightly differently in the Windows version of languageONE as
opposed to the Linux version.

Linux : Advisory file and record locking is used to coordinate independent processes. Files and
records are not actually locked but there is an agreement between processes that each
process will adhere to the protocol. When a process wishes to write a record it is obliged to
read the record, lock it , do the write and then unlock it. A second process that attempts to lock
the record will receive a warning from the lock function, however reads and writes will continue
to function. It is the application logic that supports the locking function.

Windows : Mandatory locking is where the I/O subsystem enforces the locking protocol. A
locked record will return a file status of LOCKED whenever an application attempts to read or
write that record.

It would have been possible to replicate mandatory locking within languageONE for Linux but
advisory locking is the preferred protocol. It allows read access where required while leaving
the write access to the application. The result of the implementation of locking within
languageONE means that a Windows program would need to be coded slightly differently from
a Linux version, however it is possible to do the coding such that the Windows version would
perform as expected on a Linux system (but not visa-versa).

LOCK

Only files of records can be locked.

@Files_lock I_Name, record, <optional record no>
is managed by virtue of the Record No associated with the record. | Name_NO

ie: @files_lock File, Record,Record_No

will yield the same result as:
@integers_eq Record_No,1
@files_lock File, Record

UNLOCK

Only files of records can be unlocked.

@Files_unlock I_Name, record, <optional record no>
is managed by virtue of the Record No associated with the record. | Name_NO

ie: @files_unlock File, Record,Record_No

will yield the same result as:
@integers_eq Record_No,1
@files_unlock File, Record

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
44 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

TABLES.LIB

Tables, as described in previous parts of this manual, could be visualised as internal
representations of random files (although they are more than that). They are however, apart from
a need to open or close files, similar in the fact that they must be constructed of records and these
records are read (rget) and written (rput). The commands take the following form:

BIND

@tables _bind WorkTable, AO1_Record, Index1, Index2, Index3....
this keyword has been described previously in this manual

RGET

@tables_rget WorkTable, Record_No/Index
loads the record defined by the record no/index from the table

RPUT

@tables put WorkTable, Record_No/Index
places the record defined by the record no/index into the table

FGET
RAW @tables_fget WorkTable,FieldNo,FieldName,Index,Index
COOKED A = FieldName[Index]

loads the field defined by the field No from the table, where

WorkTable is the name of the table
FieldNo is the field position in the record

¢ FieldName is the name of the recipient field. It does NOT have to be the corresponding
field in the record but must have identical properties.

¢ Index,Index,Index...the indexes that define the records (containing the field) location in

the table
FPUT
RAW @tables_fput WorkTable,FieldNo,FieldName,Index,Index
COOKED FieldName[Iindex] = A

stores the field defined by the field No from the table, where

WorkTable is the name of the table
FieldNo is the field position in the record
FieldName is the name of the sending field. It does NOT have to be the corresponding
field in the record but must have identical properties. Literals are acceptable as long as
they also have identical properties.

e Numeric literals. You need to provide a picture over-ride to match the receiving fields
size. ie. {123,'999'}
Alpha fields. Field must be the same size as that defined by the record.

Index,Index,. the indexes that define the records (containing the field) location in the
table

SORT

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
45 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

@tables_sort WorkTable, StartPosition, NoOfCharacters

NOTE: Only single dimension tables may be sorted
NOTE: A sorted table that is not entirely populated may not return the desired
result when searched.

SEARCH
@tables_search WorkTable, StartOfKey, EndOfKey, KEY, Index

returns the record associated with the provided key along with the Index used to locate the
record. If more than one record exists, the 1s record will be returned and the STATUS field
will be set to DUPLICATES

NOTE: Only single dimension tables may be searched
NOTE: A sorted table that is not entirely populated may not return the desired
result when searched.

Like files, when accessing tables languageONE provides a 'STATUS' field. It is defined as
TableName STATUS. Thus the status field for the table AOl1 Table would be
AO01_Table_STATUS. This field can be checked each time a file is accessed.

Present values are:-
22(DUPLCATES) = More than one table element exists for this key
23(INVALIDKEY) = Invalid Key

languageONE maintains a field named TableName_UBOUND which stores the location of the
highest slot within a table. It may be accessed but it must be remembered that UBOUND works
in only a single dimension. That is, if you have a table indexed as 2,2,2 then if the table is full,
UBOUND would contain a value of 8.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
46 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

XTABLES.LIB

Xtables, are tables on steroids, or more precisely, a optimised facility to work with very large files.
On a functional level, they may be used in place of an ISAM (Indexed Sequential Access
Manager). By sorting on a particular key and searching for values on that key, they are fast
enough to enable applications to be written without an ISAM.

A new file type has been defined, that of c_INDEXED, to host xtables on disk. The Indexed file is
a direct representation of an XTABLE in memory.

NOTE:- That XTABLES, being bent more toward file access, are only single dimension

NOTE:- tables. This does not mean, however, that they cannot be used for other purposes.
While Tables are defined at the time of assembly, Xtables are dynamic, that is, memory is
allocated at runtime

BIND
@xtables_bind LargeTable, LargeRecord, Size

must be used prior to any other xtable operation. It allocates memory for the table as defined
by the Size parameter and associates a record with the table.

NOTE: Remember that an XTABLE contains an extra 9 bytes at the front of each record to
hold a Delete Flag and an Index and must be taken into account when defining the xTable size.

Size = NoOfRecords*(RecordLength + 9)
RGET
@xtables_rget argeTable, Record_No

loads the record defined by the record no from the table

NOTE: If a sort has been performed on the table, obtaining a record based solely on its record
number will most times not get the record you are expecting. In order to identify your records

location in the table, a search must be performed to return the correct record no.
RPUT

@xtables_rput LargeTable, Record_No)

places the record defined by the record no into the table.

NOTE: If the table is being loaded manually. it is your responsibility to ensure that the tables

upper boundary (tablename UBQUND) is large enough to encompass the record no being
added.

NOTE: If a sort has been performed on the table, the record no used to replace the table record
must be the no returned from a search operation.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
47 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

FGET
RAW @xtables_fget WorkTable,FieldNo,FieldName,Index
COOKED A = FieldName[Index]

loads the field defined by the field No from the table, where

e LargeTable is the name of the table
FieldNo is the field position in the record
FieldName is the name of the recipient field. It does NOT have to be the corresponding
field in the record but must have identical properties.

¢ Index is the index that defines the records (containing the field) location in the table

FPUT

RAW @xtables_fput WorkTable,FieldNo,FieldName,Index
COOKED FieldName[Ilndex] = A

stores the field defined by the field No from the table, where

LargeTable is the name of the table
FieldNo is the field position in the record

¢ FieldName is the name of the sending field. It does NOT have to be the corresponding
field in the record but must have identical properties. Literals are acceptable as long as
they also have identical properties.

e Numeric literals. You may need to provide a picture over-ride to match the receiving
fields size. ie. {123,999}

¢ Alpha fields. Field must be the same size as that defined by the record. Index is the index
that defines the records (containing the field) location in the table

DELETE

@xtables_delete LargeTable, Record_No, Initialise

marks the record associated with the record number for deletion. Setting the Initialise field to
TRUE will fill the record with NULLS while FALSE will the leave the record intact.

It is dependent on the application to handle these deleted records. ie. set the
IncludeDeletedRecords to c_FALSE on any unload or handle what is written to file within your
code.

NOTE:- If a deleted record is initialised you will not be able successfully search the xtable being
that it will contain search keys of 00h

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
48 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

LOAD
@xtables_load LargeTable, LargeFile,I ncludeDeletedRecords
Although load may be used with random access files, it has been optimised to perform best
with indexed files. As indexed files are a direct representation of an xtable, languageONE can
“swallow” the entire file with a single read. This is opposed to the reading of each record when

coupled with a random file. Note though that when loading an Indexed file, the
IncludeDeletedRecords indicator is ignored.

UNLOAD

@xtables_unload LargeTable, LargeFile, IncludeDeletedRecords)

Unlike the load function, unload must write each record individually in order to maintain any
sort that may have been preformed during processing of the table. IncludeDeletedRecords
functions as would be expected for unload.

SORT

@xtables_sort LargeTable, StartPosition, NoOfCharacters,Divisor

xtables uses an optimised Quick Sort.

SEARCH
@xtables_search LargeTable, StartOfKey, EndOfKey, KEY, Idx)

returns the record associated with the provided key along with the Index used to locate the
record. If more than one record exists, the 1st record will be returned and the STATUS field will
be set to DUPLICATES

GENERAL

Like files, when accessing xtables languageONE provides a 'STATUS' field. It is defined as
TableName STATUS. Thus the status field for the table A0l Table would be
A0l Table STATUS. This field can be checked each time a file is accessed.

Present values are:-
22(DUPLCATES) = More than one table element exists for this key
23(INVALIDKEY) = Invalid Key

languageONE maintains a field named TableName_UBOUND which stores the location of the
highest slot within a table. It may be accessed directly.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
49 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

ARRAYS.LIB

Arrays, as described in previous parts of this manual, are a contiguous run of gwords (8 bytes).
They do not have the normal control block that other languageONE data items have and therefore
data must be transferred to and from the Array. Arrays are useful when speed is required and to
this end an optimised Quick Sort has been implimented.

GET
RAW @Arrays_Get ArrayName, Idx,ldx,Value
COOKED Value = ArrayName{ldx,ldx}
returns the array element - located by the Index’s - to Value
PUT
RAW @Arrays_Put ArrayName,ldx,ldx,Value
COOKED ArrayName{ldx,ldx} = Value

stores the data — value - in the Array element located by Index’s

EQ
RAW @Arrays_Eq ArrayNamel,ldx,ldx,ArrayName2,ldx,ldx
COOKED ArrayNamel{ldx,ldx} = ArrayNameZ1{ldx,ldx}
stores the data from array2 element in the arrayl element
SWAP
— Note the double equals
RAW @Arrays_Eq ArrayNamel,ldx,ldx,ArrayName2,ldx,ldx
COOKED ArrayName1{ldx,ldx} == ArrayName1{ldx,ldx}
swaps the data between array2 element and arrayl element
ADD
RAW @Arrays_Add ArrayNamel,ldx1,ldx2,ArrayName2,ldx1,ldx2

@Arrays_Add ArrayNamel,ldx1,ldx2,Dataname
@Arrays_Add ArrayNamel,ldx1,ldx2,Numeric Literal

COOKED ArrayName1{ldx,ldx} =+ ArrayName2{ldx,ldx}
ArrayName1{ldx,|dx} =+ Dataname
ArrayName1{ldx,ldx} =+ Numeric Literal

add the value to arrayl element

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
50 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

SUB
RAW @Arrays_Sub ArrayNamel,ldx1,ldx2,ArrayName2,ldx1,ldx2
@Arrays_Sub ArrayNamel,ldx1,ldx2,Dataname
@Arrays_Sub ArrayNamel,ldx1,ldx2,Numeric Literal
COOKED ArrayName1{ldx,ldx} =- ArrayName2{ldx,ldx}
ArrayName1{ldx,ldx} =- Dataname
ArrayName1{ldx,ldx} =- Numeric Literal

subtracts the value from arrayl element

MUL
RAW @Arrays_Mul ArrayName1,ldx1,ldx2,ArrayName2,ldx1,ldx2
@Arrays_Mul ArrayNamel,ldx1,ldx2,Dataname
@Arrays_Mul ArrayNamel,ldx1,ldx2,Numeric Literal
COOKED ArrayName1{ldx,ldx} =* ArrayName2{ldx,ldx}
ArrayName1{ldx,ldx} =* Dataname
ArrayName1{ldx,ldx} =* Numeric Literal

DIV

Multiplies arrayl element by the value

RAW

@Arrays_Div ArrayName1l,ldx1,ldx2,ArrayName2,ldx1,ldx2
@Arrays_Div ArrayName1l,ldx1,ldx2,Dataname
@Arrays_Div ArrayNamel,ldx1,ldx2,Numeric Literal

COOKED

ArrayName1{ldx,ldx} =/ ArrayName2{ldx,ldx}
ArrayName1{ldx,ldx} =/ Dataname

ArrayName1{ldx,Idx} =/ Numeric Literal

Divides arrayl element by the value

RAW @Arrays_IF ArrayNamel,ldx1,ldx2,=,ArrayName2,ldx1,ldx2
@Arrays_IF ArrayNamel,ldx1,ldx2,=,Dataname
@Arrays_IF ArrayNamel,ldx1,ldx2,=,Numeric Literal
COOKED IF ArrayName1{ldx,ldx} = ArrayName2{ldx,ldx}

IF ArrayName1{ldx,ldx} = Dataname
IF ArrayName1{ldx,ldx} = Numeric Literal

Compares arrayl element to the value

SORT

@Arrays_sort ArrayName

An optimised Quick Sort of the Array.
Only single dimension Arrays can be sorted correctly

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
51 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

WW\W.LIB

languageONE manages a graphical user interface by, dare | say, “leverageing” web technology.
In fact a languageONE program supplying a graphical experience to a user is a simple HTML
server. In this way it may be accessed locally thru a browser (URL being localhost:portNo) or
across either a local or remote network (URL being IPAddress:portno).

Socket technology is also used for (I)nter (P)rocess (C)ommunication. This will be described in
the following section.

The program may be defined in 3 simple statements.

@www_open PortNo
e @www_process screen, responsefield, GET_Subroutine, POST_Subroutine
e @www_close PortNo

and that is it, in its entirety. In fact a complete web site may be managed by the above 3
statements. Of course a great deal of the work is done by the front end that is described by the
HTML and perhaps Javascript that may or may not be coded.

V1.15.0NE and onwards will demonstrate the way that languageONE can implement a graphical
user interface, while V2.02 demonstrates a full blown application, V2.03 demonstrates that same
application with record locking and V2.05 demonstrates the same application but built with a
seperate “file server” program.

The languageONE program takes a slightly different take on CGl.
Wiki describes CGl as:-

In computing, Common Gateway Interface (CGIl) offers a standard protocol for web servers to
interface with executable programs running on a server that generate web pages dynamically.
Such programs are known as CGl scripts or simply as CGls; though usually written in a
scripting language, they can be written in any programming language.

In regard to the above statement languageONE nominates the executable program as taking the
lead and supplies the HTML server as a secondary process. By supplying the POST and GET
call back address's in the @www_process call the languageONE program can manage the
interface from the back end.

It is important to understand the languageONE demonstration programs, V1.15.0NE and
V1.16.0ONE in addition to the HTML and Javascript associated with these programs, to fully
appreciate the end to end process that has been adopted by languageONE. It is also taken for
granted that everyone nowadays understands web technologies.

NOTE:- WWW.LIB provides a “passthru” where a ResponseField populated by your application
will be returned directly to a browser. This mechanism is controlled by the RETURN_CODE field.
Initialising it with the length of the ResponseField tells WWW.LIB to do the passthru as opposed
to the more likely returning of a html document.

V2.02.0NE, V2.03.0NE and V2.05.0NE demonstrate this process.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
52 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

OPEN

@www_open portno

This is the 1st call required in a languageONE GUI program. This call establishes a connection
between a languageONE program and the outside world (be it a local connection via a
“localhost:portno” URL or a “IPaddress:portno” URL across a network (local or otherwise). It is
the first call that a languageONE GUI program makes in order to interface with a user in a
graphical environment.

PROCESS

@www_process Screen,ResponseField, GET_SubRoutineName, POST_SubRoutineName

This is the 2na call required in a languageONE GUI program. It defines the screen name that
begins a conversation, a response field that will be passed back to a calling program, the name
of a sub routine that will be called by WWW when a GET is received from the front end and
the name of a sub routine that will be called by WWW when a POST is received from the front
end.

It is the languageONE application program that interprets the response field and manages the
process.

NOTE:- At the minimum, the GET Routine should initialise RETURN_CODE & ERROR_CODE

BEGIN.SUB GET_SubRoutineName
RETURN_CODE = 0 ; > zero tells the server this program provides the response
ERROR_CODE =0 ; Only set ERROR_CODE if you want the server to terminate
END.SUB GET_SubRoutineName

CLOSE

@www_close portno

This is the 3w and final call required in a languageONE GUI program. This call closes the
previously established connection and terminates the process.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
53 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

(Dnter (P)rocess (C)ommunication

Inter-process communication(IPC) refers specifically to the mechanisms an operating system
provides to allow the processes to manage shared data. Typically, applications can use IPC,
categorized as clients and servers, where the client requests data and the server responds to
client requests. Many applications are both clients and servers, as commonly seen in distributed
computing.

This is managed in languageONE by the WWW.LIB module. Messages can be sent between
processes running on a single machine or multiple machines running on a network (including the
internet).

CLIENT

@www_SendMsg w_IP_Address, w_PortNo, w_Msg
@www_SendMsg "127.0.0.1", "1024", "Hello World”

This command sends a message to the machine described by the socket <IP/Port>.

If your application requires a response it is the applications responsibility to enable that. One
way of doing this may be to define a response socket to the server within you message. le
www.SendMsg w_IP_Address, w_PortNo, "192.168.0.4 1025 Hello World”

SERVER

@www_RecvMsg w_IP_Address, w_PortNo, w_Msg
@www_RecvMsg "127.0.0.1", "1024", w_Msg

The receive message call sets the server into a waiting state where it will listen for any incoming
messages. Once it has received one it will return the message to the application program. Note
that the server listens for ALL messages on the described port, NOT just one from your
application.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
54 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Client-server_model
https://en.wikipedia.org/wiki/Distributed_computing

languageONE
Version 3

APPENDIX A.

How to implement a list in languageONE.
Lists are not particularly part of the language but can be implemented as follows.

In the DICTIONARY, build a record:

@Begin_Record 17*9,List_Record
@Insertword wl, 17,'FIRST LIST ITEM '1
@Insertword w2, 17,'SECOND LIST ITEM'
@Insertword w3, 17,"THIRD LIST ITEM '
@Insertword w4, 17,'FORTH LIST ITEM
@Insertword wh, 17,'FIFTH LIST ITEM*
@Insertword w6, 17,'SIXTH LIST ITEM '
@Insertword w7,17,'SEVENTH LIST ITEM’
@Insertword w8, 17,'EIGHTH LIST ITEM *
@Insertword w9, 17,'NINTH LIST ITEM *

@End_Record List_Record

Each item in the list should be of equal size.

In the DICTIONARY, define a receiving string:
@Insertword w_List,17*9," *

In the INSTRUCTIONS Section code the following:
@Words_RecordToString List_Record,w_List

And to implement it

repeat_for 1,1,17*9,17
Display.line {w_List,1,17}
end.repeat

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
55 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE

APPENDIX B

KEYWORDS (macros)
INTEGERS

Version 3

@INTEGERS_EQ

@INTEGERS_ADD

@INTEGERS_SUB

@INTEGERS_MUL

@INTEGERS_DIV

@INTEGERS_CALC

@INTEGERS_AND

@INTEGERS_OR

@INTEGERS_XOR

SUB ROUTINES

@BEGIN_SUB

@END_SUB

@EXIT_SUB

@USING

FUNCTIONS

@BEGIN_FUNCTION
@USING

@END_FUNCTION

@EXIT_FUNCTION

SCREEN 10

@CURSOR

@ACCEPTLINE

@ACCEPTLINE_AT

@ACCEPT_AT

@DISPLAY

@DISPLAYLINE

@DISPLAY_AT

STRINGS

@INSERTWORD

@WORDS_COPY

@WORDS_PAD

@WORDS_UPPERCASE

@WORDS_LOWERCASE

@WORDS_INSERT

@WORDS_FIND

@WORDS_REPLACE

@WORDS_ENVIRONMENT

@WORDS_LENGTH

@WORDS_STRINGTORECORD

@WORDS_RECORDTOSTRING

NUMBERS

@INSERTNUMBER

@NUMBERS_EQ

@NUMBERS_ADD

@NUMBERS_SUB

@NUMBERS_MUL

@NUMBERS_DIV

@NUMBERS_CALC

DECISIONS
@IF @_IF @_OR
@_AND @_END
@ELSE @END_IF @BEGIN_TEST
@WHEN @_WHEN @WEND
@END_TEST

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025

56 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

LOOPS

languageONE
Version 3

@REPEAT_IF

@REPEAT_WHILE

@REPEAT_FOR

@EXIT_REPEAT

@END_REPEAT

FILES
@FILES
@INSERTFILE @BEGIN_RECORD @END_RECORD
@FILES_OPEN @FILES_READ @FILES_WRITE
@FILES_START @FILES_NEXT @FILES_DELETE

@FILES_CLOSE

@FILES_CHDIR

@FILES_GETCWD

@FILES_COPY

@FILES_RENAME

@FILES_REMOVE

TABLES

@INSERTTABLE

@TABLES_BIND

@TABLES_RPUT

@TABLES_RGET

@TABLES_FPUT

@TABLES_FGET

@TABLES_SORT

@TABLES_SEARCH

XTABLES

@INSERTXTABLE

@XTABLES_BIND

@XTABLES_RPUT

@XTABLES_RGET

@XTABLES_FPUT

@XTABLES_FGET

@XTABLES_SORT

@TABLES_SEARCH

@XTABLES_SEARCH

@XTABLES_LOAD

@XTABLES_UNLOAD

ARRAYS

@INSERTARRAY

@ARRAYS_GET

@ARRAYS_PUT

@ARRAYS_ADD

@ARRAYS_SUB

@ARRAYS_MUL

@ARRAYS_DIV

@ARRAYS_SWAP

@ARRAYS_EQ

@ARRAYS_SORT

@ARRAYS_IF

DATE

@DATE_SECONDS

@DATE_TIMER

@DATE_GET @DATE_DATEFROMDAYS @DATE_DAYSFROMDATE
WWW
@WWW_OPEN @WWW_PROCESS @WWW_CLOSE

@WWW_SENDMSG

@WWW_RECVMSG

MISCELLANEOUS

@INTEGERS_TOGGLE

@RUN

@WAIT (CHILD_PID)

@TERMINATE
(ERROR_CODE)

roger@languageONE.com.au
www.languageONE.com.au

Tuesday, 29 April 2025
57 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

APPENDIX C.

Because languageONE is a set of runtime libraries and access to those libraries is via a set of
text based macro, it is possible to alter the syntax of languageONE to suit your own taste. It can
be done in 2 ways.

MACROS

include/LMACROS.CPY contains all the keyword macros that comprise languageONE. You
may edit these Macros and rename any of them

SYNONYMS

A less permanent way of altering the syntax of languageONE is via the Synonyms that are
available to the reWRITER. These Synonyms tell the reWRITER to replace any token with a
substitute. Synonyms are coded as comments, prior to their use in an application program.
They should begin with the BEGIN.SYNONYMS directive and end with the
END.SYNONYMS directive.

;. BEGIN.SYNONYMS x x x x
: InsertWord © @INSERTWORD

X InsertNumber . @INSERTNUMBER

;. END.SYNONYMS #rxsssirsiriorikk x x x

The above example directs the reWRITER to replace every occurrence of INSERTWORD
with @INSERTWORD and every occurrence of INSERTNUMBER with @INSERTNUMBER

You may use “include” files in the Synonym section of your program by coding the path/file
name of the file containing the synonyms.

; B EG I N . SYN O N Y M S kkkkkkkkkkkkkkkkkkkhkkkkkhkkkhkkkkkkkkhkkk
X include/LPACK1.SYN
;. END.SYNONYMS *r#sxsiriikbixidtikii x x

NOTE:- languageONE comes with what is termed a “language Pack” (LPACK1.SYN) being a
collection of synonyms that have been defined to modify languageONE to my particular taste.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
58 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

APPENDIX D
SYSTEM SUPPLIED FIELDS
LIBRARY |NAME STRUCTURE VALUE ACCESS
STDIO LF languageONE | 0XOA/OXODOA Read
v_Cursor languageONE | 0,0 Write
COMMON |c_FALSE Constant 0
c_TRUE Constant 1
ERROR_CODE languageONE |0 Read/Write
RETURN_CODE languageONE |0 Read/Write
CHILD_PID languageONE |0 Read Only
exitRepeat languageONE | c_TRUE/C_FALSE |Read/Write
FILES c_NULL Constant 1
c LF Constant 2
c_CSV Constant 4
c_RECORD Constant 8
c_RANDOM Constant 16
c_INDEXED Constant 32
c_DIRECTORY Constant 64
<filename>_ READLENGTH |languageONE Read Only
<filename>_ STATUS languageONE Read Only
<filename>_SIZE languageONE |0 Read Only
<filename>_HANDLE languageONE |0 Read/Write
EOF languageONE |10
INVALIDKEY languageONE |23
<recordname>_NO languageONE |0
TABLES <tablename>_STATUS languageONE |0 Read Only
XTABLES |<tablename>_STATUS languageONE |0 Read Only
<tablename>_UBOUND languageONE |0
WORDS w_CommandLine 256 bytes Program Read Only
parameters
w_Spaces 128 bytes {w_spaces,1,128}
ARRAYS d(functionname) As per picture |0 Read/Write

roger@languageONE.com.au

www.languageONE.com.au
Tuesday, 29 April 2025
59 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

APPENDIX E
WINDOWS DEBUGGERS

languageONE V3.00 was developed because of the need for a useful debugger on the
Windows platform. With VisualStudio being the preferred Microsoft option this release brings
with it the successful use of that platform. A languageONE programmer needs to instal MASM
on their development system and it can be made available to VisualStudio by right clicking on
your project, selecting "Build Dependencies” followed by "Build Customizations” and checking
MASM as the target.

Windbg is my preferred option for debugging languageONE code as it offers a far lighter
options than VisualStudio. | recommend getting familiar with it if you are coding in a Windows
environment.

LINUX DEBUGGERS

Linux systems come with GDB, the GNU Debugger. It is a command line debugger and the
back end to several GUI front ends such as DDD, XXGDB and INSIGHT. | personally have
become familiar with DDD and it is what | would recommend.

Linux Debugging

Debugging languageONE becomes a little bit more difficult than on Windows in that source
lines do not easily aline with the running code. The solution to this was to increment a
system supplied field _STOP at the beginning of each macro.

inc qword[_STOP]

in this way, a watch point may be established in the debugger and set to halt the program
whenever STOP changes value. When entering a debug session, issue the following
command:-

watch (int)_STOP

All going well, the debugger will then stop at each occurrence of a macro, or more to the
point, before each line of code to be debugged.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
60 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

APPENDIX F

Macros

Becasue languageONE is actual assembler code, the ability to code macros is a manifestation
of the assembler you are using - (Windows) MASM and (Linux) NASM. Macros written for
either of these platforms must be written as of its target assembler. The ability of the reWriter
to convert macros was removed as it is felt that if you are writing macros you should probably
be more conversent with your systems assembler.

APPENDIX G
ASSEMBLER DIRECTIVES

Assembler directives are available to a languageONE program and mainly take the form of

constants.

Linux Windows
%definec_YES 1 c_YESEQU 1
%definec_NO O c_NO EQUO

LanguageONE Directives

This directive gives languageONE a default picture size when creating work fields. It may be
used more the once and maintains its value until the next directive is coded.

%define FP_DefaultPicture '9999.999999'
An example of a default picture size is the use of fixed point precedence such that:-

A =[[B *1.23]/ 2.34] directs languageONE to

create work fields as it works thru the precedence levels. Note that a divide can create any

number of decimal place (ie 22 / 7) so it may help to set the no of decimal places with this
directive.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
61 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

APPENDIX H

LANGUAGEONE STRUCTURES
@INSERTWORD

SIZE VALUE |DEFINITION

DQ 0 Not Used

DQ 0 Not Used

DB X Define it as a string
DQ 0 Defines the length
DB text String Value

@INSERTNUMBER

SIZE VALUE |DEFINITION

DB 0 No Of Digits

DB 0 No Of Places

DW 0 Reserved

DD 0 Reserved

DQ 1 Scaling for Fixed Point
DB 9 Defines it as a number
DQ 0 Defines the length

DQ 0 Value

DB 9.9” Editing Picture

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
62 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

APPENDIX |
(F)ast (L)ight (T)ool (K)it

languageONE V3.04 develops the interface required to link to (Fast) (L)ight (T)ool (Kit). Here's
what FLTK has to say on their website(www.fltk.org)

FLTK (pronounced "fulltick") is a cross-platform C++ GUI toolkit for Linux® and Microsoft®
Windows. It provides modern GUI functionality without the bloat and supports 3D graphics via
OpenGL and its built-in GLUT emulation. FLTK is designed to be small and modular enough
to be statically linked, but works fine as a shared library. FLTK also includes an excellent Ul
builder called FLUID that can be used to create applications in minutes. FLTK is provided
under the terms of the GNU Library Public License, Version 2 with exceptions that allow for
Static linking.

A search of the web, when looking for GUI tollkits, can return articles that list things like "36 best
GUI toolkits". | have investigated them all and FLTK is one of the two most suitable for
languageONE. Although it is written in C++ it can be treated as a "screen painter" without having
a full understanding of the base language. fV3.04 is a demonstration program that, if used as a
template, should smooth the way into creating GUI's for languageONE. Each click can invoke a
"callback" and it is this mechanism that languageONE uses to interface to the running C++
program. Although languageONE takes a subordinate role (ie the langaugeONE program and
languageONE.lib are statically linked to the FLTK program) it can provide all the functionality of
a back end server in a similar way that languageONE interfaces and uses html as a web based
front end.

NOTE;-There is no additional functionality build into languageONE to support FLTK, you simply
tell your program it is to be linked to a fltk program (Linux->(%define fltk 1) — Windows - (fltk
TEXTEQU)

= P9

#7 Roger's Window
Company ri' 04 Test Hame
Systems ' = A
O SYSTEM ChsntOfAccounts Genersljournal AccountEnquity Reports Deprecistion Exit
O General Ledger ~
8 Asselfvestment Account No. :m,\ Description AAAAA Cancel

qar
4a»

(F5) Accept

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
63 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au
http://www.fltk.org/

languageONE
Version 3

APPENDIX J

Lazarus-fp

From Wikipedia:- Lazarus is a cross-platform, integrated development environment (IDE) for
rapid application development (RAD) using the Free Pascal compiler. Its goal is to provide an
easy-to-use development environment for developing with the Object Pascal language, which
is as close as possible to Delphi. It is free and open-source software with different parts
released under different software licenses. Lazarus is often used to create native-code console
and graphical user interface (GUI) applications for desktop computers, mobile devices, web
applications, web services, visual components, and function libraries for several different
operating system platforms, including macOS, Linux, and Windows.

languageONE V3.08 develops the interface required to link to Lazarus/Free Pascal. This, for
me, is a far better solution. 1st of all it's NOT C++ (an abomination) but more importantly
Lazarus is a full IDE with a graphical form designer that will help build the Pascal code that is
necessary to 'react' to mouse clicks. On Linux (although not on Windows) the debugger can
step thru languageONE code or can be happily debugged using ddd/gdb. | have taken a project
developed on Linux and the porting to Windows was trivial. Windbg is fine for debugging on
Windows and | would think (although | haven't tried it as yet) Visual Studio would do the job
admirabley.

NOTE;-There is no additional functionality build into languageONE to support Lazarus-fp.
Simply statically link the languageONE object file with the Lazarus program

[e = B R

s
Account No 10120 -

Start Date

End Date

Credit

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
64 of 64

http://roger@languageONE.com.au
http://www.languageONE.com.au

