
languageONE
Version 3

roger@languageONE.com.auwww.languageONE.com.auTuesday, 29 April 20251 of 8

OVERVIEW
languageONE is an extensible system, that is – it is easily extended (most languages are).Because the system is basically a collection of assembler macros, a macro may be written byanyone and used as they code. Done correctly, the macro sits in the language as though it hadalways been there.
So what are packages ?
Packages are a collection of macros, and their underlying subroutines, written in rawlanguageONE code, that extends languageONE and provides the backbone for completingcommon tasks. This document maps out the three such package, LCURSES.PKG that extendslanguageONE by providing greater control over the keyboard and screen, LMENUS.PKG whichassist in building common menus and MATHS.PKG that provides access to the FPU and itsassociated functions.
To provide access to a languageONE package, you must code an include statement. ie:-

· %include ‘include/LCURSES.PKG’
· %include ‘include/LMENUS.PKG’
· %include ‘include/MATHS.PKG’
NOTE:-LMENUS uses LCURSES so if you intend to use LMENUS then LCURSES must bedefined along with it.

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

roger@languageONE.com.auwww.languageONE.com.auTuesday, 29 April 20252 of 8

The following screenshots offer an example of the output that is easily attained with the lcursesand the lmenus packages.

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

roger@languageONE.com.auwww.languageONE.com.auTuesday, 29 April 20253 of 8

A WORD ABOUT TERMINALS
Historically speaking a terminal is a relatively dumb electromechanical device with an inputinterface (like a keyboard) and an output interface (like a display). It was connected to anotherdevice (like a computer) via two logical channels, and all it does is:

· send the keystrokes down the first line
· read from the second line and display them on the screen.

escape sequences were used to control cursor location, color, font styling, and other options onvideo text terminals. Certain sequences of bytes, most starting with an escape and a bracketcharacter followed by parameters, are embedded into text. The terminal interprets thesesequences as commands, rather than text to display verbatim.
Almost all manufacturers of video terminals added vendor-specific escape sequences to performoperations such as placing the cursor at arbitrary positions on the screen. One example is theVT52 terminal, which allowed the cursor to be placed at an x,y location on the screen by sendingthe ESC character, a Y character, and then two characters representd by numerical values equalto the x,y location, plus 32 (thus starting at the ASCII space character and avoiding the controlcharacters). The Hazeltine 1500 had a similar feature, invoked using ~, DC1 and then the X andY positions separated with a comma. While the two terminals had identical functionality in thisregard, different control sequences had to be used to invoke them.
As these sequences were different for different terminals, elaborate libraries such as termcap("terminal capabilities") and utilities such as tput had to be created so programs could use thesame API to work with any terminal. In addition, many of these terminals required sendingnumbers (such as row and column) as the binary values of the characters; for some programminglanguages, and for systems that did not use ASCII internally, it was often difficult to turn a numberinto the correct character.
The ANSI standard attempted to address these problems by making a command set that allterminals would use and requiring all numeric information to be transmitted as ASCII numbers.These standards were introduced in the 1970s to replace vendor-specific sequences and becamewidespread in the computer equipment market by the early 1980s. They were used indevelopment, scientific, commercial text-based applications as well as bulletin board systems tooffer standardized functionality.
Although hardware text terminals have become increasingly rare in the 21st century, therelevance of the ANSI standard persists because a great majority of terminal emulators andcommand consoles interpret at least a portion of the ANSI standard.

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

roger@languageONE.com.auwww.languageONE.com.auTuesday, 29 April 20254 of 8

A WORD ABOUT TERMINAL EMULATION
A terminal emulator is a program that emulates the functionalities of the traditional computerterminals. In simple words, unlike the classic terminal that performed functions using hardware,the terminal emulator executes the same tasks in software. Examples of Linux terminal emulatorsare xterm, konsole and gnome-terminal.
ncurses (new curses) is a programming library providing an application programming interfacethat allows the programmer to write text based user interfaces in a terminal-independent manner.It is a toolkit for developing application software that runs under a terminal emulator.
LCURSES maybe thought of as “languageONE curses” or perhaps “light curses”. It does not tryto be ncurses but tries to provide enough functionality so that a fully functioning text basedinterface can be easily produced within a terminal emulator. It defines the most common escapecodes as mnemonics and allows their transmission and receipt via the standard languageONEdisplay and accept statement. LanguageONE has previously provided this function but theLCURSES.PKG has been developed to give far greater control than was previously possible. Italso highlights the use of languageONE as a macro language and how the language itself maybe extended by building on itself.
Some Assumptions Lcurses does not try to determine the type of terminal any specific emulatormimics. It assumes ANSI standard or VT52/VT100 (or combination). It has been tested with xterm,konsole and gnome-terminal and relies on the ability of these emulators to be configured to returnspecific escape sequence for any given key.
STDIO.LIB is the languageONE module that provides terminal access and it is there you will findthe escape codes that are being used. As languageONE is delivered with all the original sourcecode it is a simple task to modify the generic escape codes currently being used to somethingthat may be more appropriate. Having said that, it is a more desireable path to simply configurethe emulator to return that which languageONE expects.
One Last Thing. Originally a terminal was connected to the computer through serial cablesplugged into a Universal Asynchronous Receiver and Transmitter (UART). A UART driver readsfrom the hardware device and applies the line discipline. The line discipline is in charge ofconverting special characters (like end of line, backspaces), and echoing what has been receivedback to the teletype, so that the user can see what it has been typed. It is also responsible to bufferthe characters. When enter is pressed, the buffered data is passed to the foreground process forthe session associated with the TTY. The whole stack as defined above is called a TTY device.
IMPORTANT:- echoing what has been received back to the teletype. It is undesireable to echoescape sequences as this will destroy any screen that we are trying to build. This should be turnedoff by the use of the following command LINUX:/$ stty -echoctl To make this permenant it shouldbe coded within your .bashrc
EXAMPLES:- languageONE/src/examples/V2.13.ONE is an example program used for thedevelopment of the lcurses and lmenus packages and can be used as a guide in developinglanguageONE programs that use the lcurses and lmenus facilities. In additionlanguageONE/src/examples/0.MENU-TEMPLATE.ONE is a template program that can be usedto build menu driven applications.

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

roger@languageONE.com.auwww.languageONE.com.auTuesday, 29 April 20255 of 8

LCURSES
The LCURSES.PKG manages line drawing characters and an enhanced AcceptAt macro.
HORIZONTAL LINE
lcurses_hline startRow, StartColumn, EndColumn
This macro will generate a horizontal line at the specified row, starting at startColumn and
finishing at EndColumn. The desired foreground and background colours need to
established prior to this call

VERTICAL LINE
lcurses_vline startCol, StartRow, EndRow
This macro will generate a vertical line at the specified column, starting at startRow and
finishing at EndRow. The desired foreground and background colours need to established
prior to this call

BOX
lcurses_box startRow, startColumn, endRow, endColumn, Shadow
A box will be drawn using the supplied parameters. Shadow should be set to c_TRUE if a
shadow is required or c_FALSE if a show is not required. The desired foreground and
background colours need to established prior to this call.

ACCEPTAT
lcurses_AcceptAt Row, Col, FieldName
AcceptAt enhances the Accept.At macro by acknowledging a number of function keys and
returning a value by way of RETURN_CODE.

The following constants have been defined:-
FUNCTIONKEY1 FUNCTIONKEY2 FUNCTIONKEY3 FUNCTIONKEY4
FUNCTIONKEY5 FUNCTIONKEY6 FUNCTIONKEY7 FUNCTIONKEY8
FUNCTIONKEY9 FUNCTIONKEY10 FUNCTIONKEY11 FUNCTIONKEY12
RETURN ALT ARROWUP ARROWDOWN
ARROWRIGHT ARROWLEFT END HOME
INSERT ENDOFFIELD ESCAPE BACKSPACE
NULL
Additionally, STDIO.LIB now includes 2 more escape code driven variables. They are:-
c_HideCursor
c_ShowCursor

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

roger@languageONE.com.auwww.languageONE.com.auTuesday, 29 April 20256 of 8

LMENUS
The LMENUS.PKG will draw and manage menus based on the data supplied to it. Note that ituses the lcurses.pkg which must be included in your program if you want to use it. It functions byaccessing two tables that should be defined by the calling program. They are:-
THE ALL MENUS TABLE
which defines all the menus that the calling program wishes to manipulate. The index into the
table identifies the table while the table record defines the geometry of the table. The
following record must be coded within the calling programs files section.
@begin_record c_AM_RecordLen, AM_Record
@insertnumber AM_StartRow, 00,'99'
@insertnumber AM_StartCol, 00,'99'
@insertnumber AM_EndRow, 00,'99'
@insertnumber AM_EndCol, 00,'99'

@end_record AM_Record
@insertnumber AM_Idx, 00,'99' ; the index returned by LMENUS.PKG

THE MENUS TABLE
which defines the individual menu items. It is a 2 dimensional table with the 1st dimensiondefined by AM_Idx sourced from the all menus table. The following record must be codedwithin the calling programs files section.
@begin_record c_M_RecordLen,M_Record
@insertword M_Type, 01,''” ; the menu entry type
@insertnumber M_Target, 00,'99999999' ; the target
@insertword M_Entry, 55,''” ; and the text

@end_record M_Record
@insertnumber M_Idx, 00,'99 ; the index returned by LMENUS.PKG
NOTE: that c_AM_RecordLen and c_M_RecordLen must be defined before their use andALWAYS have the following definition:-c_AM_RecordLen EQU 08c_M_RecordLen EQU 64
NOTE: that c_AM_NoOfRecords and c_M_NoOfRecords used by the lmenus program (andyour own) must be established preceeding the include statement. Define them as:-c_AM_NoOfRecords EQU nnc_M_NoOfRecords EQU nn
As with all tables in languageONE there must be an entry in the tables section:-@inserttable AM_Table, c_AM_RecordLen*8 ; Allows for 8 menus
@inserttable M_Table, c_M_RecordLen*8*16 ; Allows for 8 menus with 16 entries

and they must be bound in the instructions section:-
@tables_bind AM_Table,AM_Record,8
@tables_bind M_Table,M_Record,8,16

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

roger@languageONE.com.auwww.languageONE.com.auTuesday, 29 April 20257 of 8

MENU ITEMS
lmenus_MenuItems AM_Idx, M_Idx, M_Type, M_Target, M_Entry
The Menus record may be populated and loaded manually but the lmenus_MenuItems
has been defined to make this a little easier.

M_TYPE
· S: A Subroutine in this (or a linked) program
· M: A sub Menu
· X: An external program
· Space is end of options and must be defined to mark the end of the menu

M_TARGET
· M_Type = S:Subroutine name
· M_Type = M: Menu No
· M_Type = X:0

M_ENTRY
The text that appears on the menu

NOTE:- That if this table is loaded manually, the target must be loaded using the followingfragments of assembler code:-
If the Target is a Menu, the target must be loaded with it’s number
· mov qword[M_Target],Menu Numberwhile if the target is a subroutine the address must be loaded as
· lea rax,SubRoutineName
· mov qword[M_Target],rax

MENU
lmenus_Menu AM_Idx, c_TRUE/c_FALSE
The menu macro will pass handling of the menu over to lmenus to manage. This routine
simply handles the ARROWUP and ARROWDOWN keys while returning the RETURN and
ESCAPE keys along with the ARROWLEFT and ARROWRIGHT keys in RETURN_CODE.
When the RETURN key has been pressed AM_Idx and M_Idx will have been set and the
table record has been read.
When the second parameter is set to c_TRUE lmenus will wait for a user response. When
the second parameter is set to c_FALSE, the menu will be displayed and lmenus will return
control to the calling program.

CALL
lmenus_Call M_Target
This macro should be used (in place of the normal $Call) when a sub routine name has
been returned the lmenus.Menu.

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

roger@languageONE.com.auwww.languageONE.com.auTuesday, 29 April 20258 of 8

MATHS
The MATHS.PKG provides access to the FPU in the form of functions
F_ADD(X,Y)
Answer = f_Add(Number1,Number2)

Adds Number2 to Number1 and returns the result in Answer.
F_SUB(X,Y)
Answer = f_Sub(Number1,Number2)Subtracts Number2 from Number1 and returns the result in Answer.

F_MUL(X,Y)
Answer = f_Mul(Number1,Number2)Multiplies Numbe2 and Number1 and returns the result in Answer.

F_DIV(X,Y)
Answer = f_Div(Number1,Number2)Divides Number1 by Number2 and returns the result in Answer.

F_POWER(X,Y)
Answer = f_Power(Base,Exponent)returns the result of the base to power of the exponent.

F_SQROOT(X)
Answer = f_SqRoot(Number)returns the square root of Number.

F_SIN(X)
Answer = f_Sin(Degrees)returns the sine of degrees

F_COS(X)
Answer = f_Cos(Degrees)returns the cosine of degrees

F_TAN(X)
Answer = f_Tan(Degrees)returns the tan of degrees

F_PI(X)
Answer = f_PI()returns the value of PI

f_LogN(x)
Answer = f_LogN(Number)returns the natural log of Number

F_LOG(X)
Answer = f_Log(Number)returns the log of Number

http://roger@languageONE.com.au
http://www.languageONE.com.au

