languageONE
Version 3

OVERVIEW

languageONE is an extensible system, that is — it is easily extended (most languages are).
Because the system is basically a collection of assembler macros, a macro may be written by
anyone and used as they code. Done correctly, the macro sits in the language as though it had
always been there.

So what are packages ?

Packages are a collection of macros, and their underlying subroutines, written in raw
languageONE code, that extends languageONE and provides the backbone for completing
common tasks. This document maps out the three such package, LCURSES.PKG that extends
languageONE by providing greater control over the keyboard and screen, LMENUS.PKG which
assist in building common menus and MATHS.PKG that provides access to the FPU and its
associated functions.

To provide access to a languageONE package, you must code an include statement. ie:-

e %include ‘include/LCURSES.PKG’
¢ %include ‘include/LMENUS.PKG’
o %include ‘include/MATHS.PKG’

NOTE:-LMENUS uses LCURSES so if you intend to use LMENUS then LCURSES must be
defined along with it.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
1 of8

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

The following screenshots offer an example of the output that is easily attained with the Icurses
and the Imenus packages.

fain Henu 5

_1_2 Subroutine
B_1 3 Subroutine
A Sub Menu
Menu Option
Henu Option
Menu Option
Menu Option
Henu Option

@ UPSTAIRS: fsdc-ROGERShomefroger/_devissource/languag...

File Edit Search

Open. ..
Save
Save Az...

Print

Exit

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
2 of 8

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

A WORD ABOUT TERMINALS

Historically speaking a terminal is a relatively dumb electromechanical device with an input
interface (like a keyboard) and an output interface (like a display). It was connected to another
device (like a computer) via two logical channels, and all it does is:

¢ send the keystrokes down the first line

e read from the second line and display them on the screen.

escape sequences were used to control cursor location, color, font styling, and other options on
video text terminals. Certain sequences of bytes, most starting with an escape and a bracket
character followed by parameters, are embedded into text. The terminal interprets these
sequences as commands, rather than text to display verbatim.

Almost all manufacturers of video terminals added vendor-specific escape sequences to perform
operations such as placing the cursor at arbitrary positions on the screen. One example is the
VT52 terminal, which allowed the cursor to be placed at an x,y location on the screen by sending
the ESC character, a Y character, and then two characters representd by numerical values equal
to the x,y location, plus 32 (thus starting at the ASCII space character and avoiding the control
characters). The Hazeltine 1500 had a similar feature, invoked using ~, DC1 and then the X and
Y positions separated with a comma. While the two terminals had identical functionality in this
regard, different control sequences had to be used to invoke them.

As these sequences were different for different terminals, elaborate libraries such as termcap
("terminal capabilities") and utilities such as tput had to be created so programs could use the
same API to work with any terminal. In addition, many of these terminals required sending
numbers (such as row and column) as the binary values of the characters; for some programming
languages, and for systems that did not use ASCII internally, it was often difficult to turn a number
into the correct character.

The ANSI standard attempted to address these problems by making a command set that all
terminals would use and requiring all numeric information to be transmitted as ASCII numbers.
These standards were introduced in the 1970s to replace vendor-specific sequences and became
widespread in the computer equipment market by the early 1980s. They were used in
development, scientific, commercial text-based applications as well as bulletin board systems to
offer standardized functionality.

Although hardware text terminals have become increasingly rare in the 21st century, the
relevance of the ANSI standard persists because a great majority of terminal emulators and
command consoles interpret at least a portion of the ANSI standard.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
3 of8

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

A WORD ABOUT TERMINAL EMULATION

A terminal emulator is a program that emulates the functionalities of the traditional computer
terminals. In simple words, unlike the classic terminal that performed functions using hardware,
the terminal emulator executes the same tasks in software. Examples of Linux terminal emulators
are xterm, konsole and gnome-terminal.

ncurses (new curses) is a programming library providing an application programming interface
that allows the programmer to write text based user interfaces in a terminal-independent manner.
It is a toolkit for developing application software that runs under a terminal emulator.

LCURSES maybe thought of as “languageONE curses” or perhaps “light curses”. It does not try
to be ncurses but tries to provide enough functionality so that a fully functioning text based
interface can be easily produced within a terminal emulator. It defines the most common escape
codes as mnemonics and allows their transmission and receipt via the standard languageONE
display and accept statement. LanguageONE has previously provided this function but the
LCURSES.PKG has been developed to give far greater control than was previously possible. It
also highlights the use of languageONE as a macro language and how the language itself may
be extended by building on itself.

Some Assumptions Lcurses does not try to determine the type of terminal any specific emulator
mimics. It assumes ANSI standard or VT52/VT100 (or combination). It has been tested with xterm,
konsole and gnome-terminal and relies on the ability of these emulators to be configured to return
specific escape sequence for any given key.

STDIO.LIB is the languageONE module that provides terminal access and it is there you will find
the escape codes that are being used. As languageONE is delivered with all the original source
code it is a simple task to modify the generic escape codes currently being used to something
that may be more appropriate. Having said that, it is a more desireable path to simply configure
the emulator to return that which languageONE expects.

One Last Thing. Originally a terminal was connected to the computer through serial cables
plugged into a Universal Asynchronous Receiver and Transmitter (UART). A UART driver reads
from the hardware device and applies the line discipline. The line discipline is in charge of
converting special characters (like end of line, backspaces), and echoing what has been received
back to the teletype, so that the user can see what it has been typed. Itis also responsible to buffer
the characters. When enter is pressed, the buffered data is passed to the foreground process for
the session associated with the TTY. The whole stack as defined above is called a TTY device.

IMPORTANT:- echoing what has been received back to the teletype. It is undesireable to echo
escape sequences as this will destroy any screen that we are trying to build. This should be turned
off by the use of the following command LINUX:/$ stty -echoctl To make this permenant it should
be coded within your .bashrc

EXAMPLES:- languageONE/src/examples/V2.13.0ONE is an example program used for the
development of the Icurses and Imenus packages and can be used as a guide in developing
languageONE programs that use the Icurses and Imenus facilities. In addition
languageONE/src/examples/0.MENU-TEMPLATE.ONE is a template program that can be used
to build menu driven applications.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
4 of 8

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

LCURSES

The LCURSES.PKG manages line drawing characters and an enhanced AcceptAt macro.

HORIZONTAL LINE

Icurses_hline startRow, StartColumn, EndColumn
This macro will generate a horizontal line at the specified row, starting at startColumn and
finishing at EndColumn. The desired foreground and background colours need to
established prior to this call

VERTICAL LINE

lcurses_vline startCol, StartRow, EndRow
This macro will generate a vertical line at the specified column, starting at startRow and
finishing at EndRow. The desired foreground and background colours need to established
prior to this call

BOX

lcurses_box startRow, startColumn, endRow, endColumn, Shadow
A box will be drawn using the supplied parameters. Shadow should be set to ¢ TRUE if a
shadow is required or c_FALSE if a show is not required. The desired foreground and
background colours need to established prior to this call.

ACCEPTAT

lcurses_AcceptAt Row, Col, FieldName
AcceptAt enhances the Accept.At macro by acknowledging a number of function keys and
returning a value by way of RETURN_CODE.

The following constants have been defined:-

FUNCTIONKEY1

FUNCTIONKEY2

FUNCTIONKEY3

FUNCTIONKEY4

FUNCTIONKEY5

FUNCTIONKEY®6

FUNCTIONKEY7

FUNCTIONKEYS8

FUNCTIONKEY9

FUNCTIONKEY10

FUNCTIONKEY11

FUNCTIONKEY12

RETURN ALT ARROWUP ARROWDOWN
ARROWRIGHT ARROWLEFT END HOME
INSERT ENDOFFIELD ESCAPE BACKSPACE
NULL

Additionally, STDIO.LIB now includes 2 more escape code driven variables. They are:-
¢_HideCursor
¢c_ShowCursor

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
5 0of 8

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

LMENUS

The LMENUS.PKG will draw and manage menus based on the data supplied to it. Note that it
uses the lcurses.pkg which must be included in your program if you want to use it. It functions by
accessing two tables that should be defined by the calling program. They are:-

THE ALL MENUS TABLE

which defines all the menus that the calling program wishes to manipulate. The index into the
table identifies the table while the table record defines the geometry of the table. The
following record must be coded within the calling programs files section.

@begin_record c_ AM_RecordLen, AM_Record
@insertnumber AM_StartRow, 00,99

@insertnumber AM_StartCol, 00,'99'
@insertnumber AM_EndRow, 00,'99'
@insertnumber AM_EndCaol, 00,99
@end_record AM_Record
@insertnumber AM_Idx, 00,'99' ; the index returned by LMENUS.PKG

THE MENUS TABLE

which defines the individual menu items. It is a 2 dimensional table with the 1st dimension
defined by AM_Ildx sourced from the all menus table. The following record must be coded
within the calling programs files section.

@begin_record ¢c_M_RecordLen,M_Record

@insertword M_Type, 01,™ ; the menu entry type
@insertnumber M_Target, 00,'99999999" ; the target
@insertword M_Entry, 55," ; and the text

@end_record M_Record

@insertnumber M_Idx, 00,'99 ; the index returned by LMENUS.PKG

NOTE: that c_AM_RecordLen and c_M_RecordLen must be defined before their use and
ALWAYS have the following definition:-

c_AM_RecordLen EQU 08

¢c_M_RecordLen EQU 64

NOTE: that c_ AM_NoOfRecords and ¢_M_NoOfRecords used by the Imenus program (and
your own) must be established preceeding the include statement. Define them as:-
¢c_AM_NoOfRecords EQU nn
¢c_M_NoOfRecords EQU nn

As with all tables in languageONE there must be an entry in the tables section:-
@inserttable AM_Table, c. AM_RecordLen*8 : Allows for 8 menus

@inserttable M_Table, c. M_RecordLen*8*16 ; Allows for 8 menus with 16 entries

and they must be bound in the instructions section:-
@tables_bind AM_Table,AM_Record,8
@tables _bind M_Table,M_Record,8,16

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
6 of 8

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

MENU ITEMS

Imenus_Menultems AM_Idx, M_Ildx, M_Type, M_Target, M_Entry
The Menus record may be populated and loaded manually but the Imenus_Menultems
has been defined to make this a little easier.

M_TYPE
e S: A Subroutine in this (or a linked) program
e M: AsubMenu
e X: An external program
e Space is end of options and must be defined to mark the end of the menu

M_TARGET

e M Type = S:Subroutine name
M_Type = M: Menu No
e M_Type=X:0

M_ENTRY

The text that appears on the menu

NOTE:- That if this table is loaded manually, the target must be loaded using the following
fragments of assembler code:-

If the Target is a Menu, the target must be loaded with it's number
e mov gword[M_Target],Menu Number

while if the target is a subroutine the address must be loaded as

¢ |ea rax,SubRoutineName

e mov gword[M_Target],rax

MENU
Imenus_Menu AM_Idx, c_ TRUE/c_FALSE

The menu macro will pass handling of the menu over to Imenus to manage. This routine
simply handles the ARROWUP and ARROWDOWN keys while returning the RETURN and
ESCAPE keys along with the ARROWLEFT and ARROWRIGHT keys in RETURN_CODE.

When the RETURN key has been pressed AM_ldx and M_Idx will have been set and the
table record has been read.

When the second parameter is set to ¢ TRUE Imenus will wait for a user response. When
the second parameter is set to c_FALSE, the menu will be displayed and Imenus will return
control to the calling program.

CALL

Imenus_Call M_Target

This macro should be used (in place of the normal $Call) when a sub routine name has
been returned the Imenus.Menu.

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
7 of 8

http://roger@languageONE.com.au
http://www.languageONE.com.au

languageONE
Version 3

MATHS

The MATHS.PKG provides access to the FPU in the form of functions
F_ADD(X.,Y)
Answer = f_Add(Numberl,Number2)
Adds Number2 to Numberl and returns the result in Answer.
F_SUB(X.,Y)

Answer = f_Sub(Numberl,Number2)
Subtracts Number2 from Numberl and returns the result in Answer.

F_MUL(X,Y)

Answer = f_Mul(Numberl,Number2)
Multiplies Numbe2 and Numberl and returns the result in Answer.

F_DIV(X,Y)

Answer = f_Div(Numberl,Number2)
Divides Numberl by Number2 and returns the result in Answer.

F_POWER(X,Y)

Answer = f_Power(Base,Exponent)
returns the result of the base to power of the exponent.

F_SQROOT(X)

Answer = f_SgRoot(Number)
returns the square root of Number.

F_SIN(X)

Answer = f_Sin(Degrees)
returns the sine of degrees

F_COS(X)

Answer = f_Cos(Degrees)
returns the cosine of degrees

F_TAN(X)

Answer = f_Tan(Degrees)
returns the tan of degrees

F_PI(X)

Answer =1 _PI()
returns the value of PI

f_LogN(x)

Answer = f_LogN(Number)
returns the natural log of Number

F_LOG(X)

Answer = f_Log(Number)
returns the log of Number

roger@languageONE.com.au
www.languageONE.com.au
Tuesday, 29 April 2025
8 of 8

http://roger@languageONE.com.au
http://www.languageONE.com.au

